A finite control set model predictive control strategy for the control of the stator currents of a synchronous reluctance motor driven by a three-level neutral point clamped inverter is presented in this paper. The presented algorithm minimizes the stator current distortions while operating the drive system at switching frequencies of a few hundred Hertz. Moreover, the power electronic converter is protected by overcurrents and/or overvoltages owing to a hard constraint imposed on the stator currents. To efficiently solve the underlying integer nonlinear optimization problem a sphere decoding algorithm serves as optimizer. To this end, a numerical calculation of the unconstrained solution of the optimization problem is proposed, along with modifications in the algorithm proposed in [1] so as to meet the above-mentioned control objectives. Simulation results show the effectiveness of the proposed control algorithm.

Constrained Long-Horizon Direct Model Predictive Control for Synchronous Reluctance Motor Drives

Ortombina, L.
;
TINAZZI, FABIO;Zigliotto, M.;
2018

Abstract

A finite control set model predictive control strategy for the control of the stator currents of a synchronous reluctance motor driven by a three-level neutral point clamped inverter is presented in this paper. The presented algorithm minimizes the stator current distortions while operating the drive system at switching frequencies of a few hundred Hertz. Moreover, the power electronic converter is protected by overcurrents and/or overvoltages owing to a hard constraint imposed on the stator currents. To efficiently solve the underlying integer nonlinear optimization problem a sphere decoding algorithm serves as optimizer. To this end, a numerical calculation of the unconstrained solution of the optimization problem is proposed, along with modifications in the algorithm proposed in [1] so as to meet the above-mentioned control objectives. Simulation results show the effectiveness of the proposed control algorithm.
2018
2018 IEEE 19th Workshop on Control and Modeling for Power Electronics, COMPEL 2018
9781538655412
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3283377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact