To keep biogas production competitive against alternatives in the energy sector, operating costs of biogas plants must be reduced. Up to 50 % of the energy consumption in biogas plants is contributed by mixing of biomass slurry. Thus, optimization of the mixing system is a promising approach to increase the overall efficiency of biogas plants. Investigations to find the optimal conditions of mixing are challenging in full-scale biogas digesters. Two main strategies to study biomass mixing in laboratories are to build a scale-down digester using an artificial substrate to mimic biomass, and to develop a computational fluid dynamics (CFD) model to simulate the mixing process. In this paper, a combined approach is carried out: a CFD model is presented and verified experimentally.

Modeling Mixing in Anaerobic Digesters with Computational Fluid Dynamics Validated by Experiments

Conti Fosca
;
2018

Abstract

To keep biogas production competitive against alternatives in the energy sector, operating costs of biogas plants must be reduced. Up to 50 % of the energy consumption in biogas plants is contributed by mixing of biomass slurry. Thus, optimization of the mixing system is a promising approach to increase the overall efficiency of biogas plants. Investigations to find the optimal conditions of mixing are challenging in full-scale biogas digesters. Two main strategies to study biomass mixing in laboratories are to build a scale-down digester using an artificial substrate to mimic biomass, and to develop a computational fluid dynamics (CFD) model to simulate the mixing process. In this paper, a combined approach is carried out: a CFD model is presented and verified experimentally.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3285842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 15
social impact