Background/Aim: The identification of a series of oxadiazole-based compounds, as promising antiproliferative agents, has been previously reported. The aim of this study was to explore the SAR of newly-synthesized oxadiazole derivatives and identify their molecular targets. Materials and Methods: A small library of 1,2,5-oxadiazole derivatives was synthetized and their antiproliferative activity was tested by the MTT assay. Their interaction with topoisomerase I was evaluated and a molecular docking study was performed. Results: Several candidates showed cytotoxicity towards two human tumor cell lines, HCT-116 (colorectal carcinoma) and HeLa (cervix adenocarcinoma). Some derivatives exhibited inhibitory effects on the catalytic activity of topoisomerase I and this effect was supported by docking studies. Conclusion: The enzyme inhibition results, although not directly related to cytotoxicity, suggest that a properly modified 1,2,5 oxadiazole scaffold could be considered for the development of new anti-topoisomerase agents.

Exploring the biological activity of a library of 1,2,5-oxadiazole derivatives endowed with antiproliferative activity

Hyeraci, Mariafrancesca;García-Argáez, Aída Nelly;Via, Lisa Dalla
;
2019

Abstract

Background/Aim: The identification of a series of oxadiazole-based compounds, as promising antiproliferative agents, has been previously reported. The aim of this study was to explore the SAR of newly-synthesized oxadiazole derivatives and identify their molecular targets. Materials and Methods: A small library of 1,2,5-oxadiazole derivatives was synthetized and their antiproliferative activity was tested by the MTT assay. Their interaction with topoisomerase I was evaluated and a molecular docking study was performed. Results: Several candidates showed cytotoxicity towards two human tumor cell lines, HCT-116 (colorectal carcinoma) and HeLa (cervix adenocarcinoma). Some derivatives exhibited inhibitory effects on the catalytic activity of topoisomerase I and this effect was supported by docking studies. Conclusion: The enzyme inhibition results, although not directly related to cytotoxicity, suggest that a properly modified 1,2,5 oxadiazole scaffold could be considered for the development of new anti-topoisomerase agents.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3287849
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact