Let g be a finite dimensional simple Lie algebra over an algebraically closed field K of characteristic 0. A linear map ϕ : g → g is called a local automorphism if for every x in g there is an automorphism ϕ_x of g such that ϕ(x) = ϕ_x(x). We prove that a linear map ϕ : g → g is local automorphism if and only if it is an automorphism or an anti-automorphism.
Local automorphisms of finite dimensional simple Lie algebras
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Costantini, Mauro
			2019
Abstract
Let g be a finite dimensional simple Lie algebra over an algebraically closed field K of characteristic 0. A linear map ϕ : g → g is called a local automorphism if for every x in g there is an automorphism ϕ_x of g such that ϕ(x) = ϕ_x(x). We prove that a linear map ϕ : g → g is local automorphism if and only if it is an automorphism or an anti-automorphism.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
			Non ci sono file associati a questo prodotto.
		
		
	
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




