Aims: We study the kinematically distinct components in two early-type galaxies NGC 448 and NGC 4365 aided by integral-field observations with the Multi-Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope. The former galaxy has previously been shown to host a counter-rotating stellar disc while the latter harbours a central (apparently) decoupled core that has been suggested to not be physically distinct from the main body and instead stems from the different orbital types in the core and main body due to its triaxial nature. We aim to measure the brightness profiles, kinematics, and stellar population properties of the peculiar kinematic structures in these galaxies and shed light on their true nature and formation mechanism. Methods: We use a kinematic decomposition technique to separate the individual contributions to the spectra of the two distinct kinematic components observed at each spatial position in the field of view. Furthermore, by folding back the outcome of a photometric decomposition we reduce the intrinsic degeneracies in recovering the kinematics and the best-fitting stellar spectral templates. Finally, by extracting the Lick line-strength indices for the individual components and fitting them to single stellar population models we derive their ages, metallicities, and α/Fe overabundances. Results: The two kinematically decoupled stellar components in NGC 448 have similar ages, but different chemical compositions. The distinct kinematic feature in NGC 448 has a nearly exponential surface-brightness light profile, dominates in the innermost 10 arcsec, is smaller in size, and is very likely an embedded counter-rotating disc as also indicated by its kinematics. It has higher metallicity than the main galaxy stellar body and lower α/Fe overabundance. By contrast, we do not find evidence for true decoupling in the two distinct kinematic components in NGC 4365. This confirms earlier work suggesting that the kinematically distinct core is likely not a separate dynamical structure, but most certainly likely a projection effect stemming from the orbital structure of this galaxy that was previously found to be intrinsically triaxial in shape. Conclusions: Our findings indicate that the kinematically decoupled component in NGC 448 is truly decoupled, has external origin, and was formed through either the acquisition of gas and a subsequent star-formation episode or from the direct accretion of stars from a companion. Conversely, the presence of a kinematically distinct component in NGC 4365 is not associated to a true kinematic decoupling and is instead most likely due to a projection effect stemming from the triaxial nature of this galaxy.

The properties of the kinematically distinct components in NGC 448 and NGC 4365

Corsini, E. M.;Pizzella, A.;Dalla Bontà, E.;
2019

Abstract

Aims: We study the kinematically distinct components in two early-type galaxies NGC 448 and NGC 4365 aided by integral-field observations with the Multi-Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope. The former galaxy has previously been shown to host a counter-rotating stellar disc while the latter harbours a central (apparently) decoupled core that has been suggested to not be physically distinct from the main body and instead stems from the different orbital types in the core and main body due to its triaxial nature. We aim to measure the brightness profiles, kinematics, and stellar population properties of the peculiar kinematic structures in these galaxies and shed light on their true nature and formation mechanism. Methods: We use a kinematic decomposition technique to separate the individual contributions to the spectra of the two distinct kinematic components observed at each spatial position in the field of view. Furthermore, by folding back the outcome of a photometric decomposition we reduce the intrinsic degeneracies in recovering the kinematics and the best-fitting stellar spectral templates. Finally, by extracting the Lick line-strength indices for the individual components and fitting them to single stellar population models we derive their ages, metallicities, and α/Fe overabundances. Results: The two kinematically decoupled stellar components in NGC 448 have similar ages, but different chemical compositions. The distinct kinematic feature in NGC 448 has a nearly exponential surface-brightness light profile, dominates in the innermost 10 arcsec, is smaller in size, and is very likely an embedded counter-rotating disc as also indicated by its kinematics. It has higher metallicity than the main galaxy stellar body and lower α/Fe overabundance. By contrast, we do not find evidence for true decoupling in the two distinct kinematic components in NGC 4365. This confirms earlier work suggesting that the kinematically distinct core is likely not a separate dynamical structure, but most certainly likely a projection effect stemming from the orbital structure of this galaxy that was previously found to be intrinsically triaxial in shape. Conclusions: Our findings indicate that the kinematically decoupled component in NGC 448 is truly decoupled, has external origin, and was formed through either the acquisition of gas and a subsequent star-formation episode or from the direct accretion of stars from a companion. Conversely, the presence of a kinematically distinct component in NGC 4365 is not associated to a true kinematic decoupling and is instead most likely due to a projection effect stemming from the triaxial nature of this galaxy.
File in questo prodotto:
File Dimensione Formato  
2019_AA_623_A87_Nedelchev_KDC_N488_N4365.pdf

accesso aperto

Descrizione: 2019_AA_623_A87_Nedelchev_KDC_N488_N4365.pdf
Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 6.31 MB
Formato Adobe PDF
6.31 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3292669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact