The evolution of technology and biomaterials has permitted a parallel development of renal replacement therapies in the acute, critically ill patient. From the original continuous artero-venous hemofiltration method new techniques such as continuous veno-venous hemofiltration, hemodiafiltration and high-flux: dialysis have been developed and are clinically used. Similar progress has been made with artificial membranes. We investigated the possibility of using a modified cellulosic membrane for continuous therapies, assessing the hydraulic characteristics and clearance performances of high-flux cellulose triacetate hemodiafilter (0.7 m(2)) in vitro and in vivo. The flowdynamic characteristics of the filter suggest its optimal use in veno-venous pump-drive techniques. Efficiency was excellent, with urea daily clearances as high as 50 liters or more. The high permeability and porosity of the membrane also increased the clearances of larger solutes such as creatinine and inulin. No side effects occurred during treatment and we conclude that cellulose triacetate may be considered a good alternative to synthetic membranes in continuous renal replacement therapies.

Cellulose triacetate: another membrane for continuous renal replacement therapy

Ronco C;
1999

Abstract

The evolution of technology and biomaterials has permitted a parallel development of renal replacement therapies in the acute, critically ill patient. From the original continuous artero-venous hemofiltration method new techniques such as continuous veno-venous hemofiltration, hemodiafiltration and high-flux: dialysis have been developed and are clinically used. Similar progress has been made with artificial membranes. We investigated the possibility of using a modified cellulosic membrane for continuous therapies, assessing the hydraulic characteristics and clearance performances of high-flux cellulose triacetate hemodiafilter (0.7 m(2)) in vitro and in vivo. The flowdynamic characteristics of the filter suggest its optimal use in veno-venous pump-drive techniques. Efficiency was excellent, with urea daily clearances as high as 50 liters or more. The high permeability and porosity of the membrane also increased the clearances of larger solutes such as creatinine and inulin. No side effects occurred during treatment and we conclude that cellulose triacetate may be considered a good alternative to synthetic membranes in continuous renal replacement therapies.
1999
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3293513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 10
social impact