The elastic-plastic J-integral is adopted to correlate fatigue crack growth data of ductile metals. An analytical link is known to exist between the J-integral and the strain energy density averaged in a control volume embracing the crack tip. On the other hand, the strain energy fluctuation is the source of temperature variations close to a fatigue crack tip of a metal material; hence the possibility to measure the J-integral from infrared thermographic scanning at the crack tip is envisaged and it is the focus of this paper. It is proposed that the elastic component of the J-integral is derived from a thermoelastic stress analysis, while the plastic component of the J-integral is derived from the heat energy loss. An analytical expression is formalised to apply this novel approach. Therefore, the elastic-plastic J-integral range was evaluated starting from infrared temperature maps measured in situ during crack propagation tests of AISI 304L stainless steel specimens. The range of the infrared thermography-based J-integral correlated well the crack growth data generated in small as well as large scale yielding conditions. Finally, the experimental values of the J-integral were successfully compared with the corresponding numerical values obtained from elastic-plastic finite element analyses.

Infrared thermography-based evaluation of the elastic-plastic J-integral to correlate fatigue crack growth data of a stainless steel

G. Meneghetti
;
M. Ricotta;
2019

Abstract

The elastic-plastic J-integral is adopted to correlate fatigue crack growth data of ductile metals. An analytical link is known to exist between the J-integral and the strain energy density averaged in a control volume embracing the crack tip. On the other hand, the strain energy fluctuation is the source of temperature variations close to a fatigue crack tip of a metal material; hence the possibility to measure the J-integral from infrared thermographic scanning at the crack tip is envisaged and it is the focus of this paper. It is proposed that the elastic component of the J-integral is derived from a thermoelastic stress analysis, while the plastic component of the J-integral is derived from the heat energy loss. An analytical expression is formalised to apply this novel approach. Therefore, the elastic-plastic J-integral range was evaluated starting from infrared temperature maps measured in situ during crack propagation tests of AISI 304L stainless steel specimens. The range of the infrared thermography-based J-integral correlated well the crack growth data generated in small as well as large scale yielding conditions. Finally, the experimental values of the J-integral were successfully compared with the corresponding numerical values obtained from elastic-plastic finite element analyses.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3295112
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 22
social impact