Shanghai, in China, has experienced two periods of rapid land subsidence mainly caused by groundwater exploitation related to economic and population growth. The first period occurred during 1956–1965 and was characterized by an average land subsidence rate of 83 mm/yr, and the second period occurred during 1990–1998 with an average subsidence rate of 16 mm/yr. Owing to the establishment of monitoring networks for groundwater levels and land subsidence, a valuable dataset has been collected since the 1960s and used to develop regional land subsidence models applied to manage groundwater resources and mitigate land subsidence. The previous geomechanical modeling approaches to simulate land subsidence were based on one-dimensional (1D) vertical stress and deformation. In this study, a numerical model of land subsidence is developed to simulate explicitly coupled three-dimensional (3D) groundwater flow and 3D aquifersystem displacements in downtown Shanghai from 30 December 1979 to 30 December 1995. The model is calibrated using piezometric, geodetic-leveling, and borehole extensometer measurements made during the 16-year simulation period. The 3D model satisfactorily reproduces the measured piezometric and deformation observations. For the first time, the capability exists to provide some preliminary estimations on the horizontal displacement field associated with the well-known land subsidence in Shanghai and for which no measurements are available. The simulated horizontal displacements peak at 11 mm, i.e. less than 10% of the simulated maximum land subsidence, and seems too small to seriously damage infrastructure such as the subways (metro lines) in the center area of Shanghai.

Three-dimensional numerical modeling of land subsidence in Shanghai, China

Teatini, Pietro
2016

Abstract

Shanghai, in China, has experienced two periods of rapid land subsidence mainly caused by groundwater exploitation related to economic and population growth. The first period occurred during 1956–1965 and was characterized by an average land subsidence rate of 83 mm/yr, and the second period occurred during 1990–1998 with an average subsidence rate of 16 mm/yr. Owing to the establishment of monitoring networks for groundwater levels and land subsidence, a valuable dataset has been collected since the 1960s and used to develop regional land subsidence models applied to manage groundwater resources and mitigate land subsidence. The previous geomechanical modeling approaches to simulate land subsidence were based on one-dimensional (1D) vertical stress and deformation. In this study, a numerical model of land subsidence is developed to simulate explicitly coupled three-dimensional (3D) groundwater flow and 3D aquifersystem displacements in downtown Shanghai from 30 December 1979 to 30 December 1995. The model is calibrated using piezometric, geodetic-leveling, and borehole extensometer measurements made during the 16-year simulation period. The 3D model satisfactorily reproduces the measured piezometric and deformation observations. For the first time, the capability exists to provide some preliminary estimations on the horizontal displacement field associated with the well-known land subsidence in Shanghai and for which no measurements are available. The simulated horizontal displacements peak at 11 mm, i.e. less than 10% of the simulated maximum land subsidence, and seems too small to seriously damage infrastructure such as the subways (metro lines) in the center area of Shanghai.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3295747
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 22
social impact