This article presents an integrated vision-based guiding system for aerial manipulation. More specifically, a 4 DoF planar dexterous manipulator, with a stereo camera attached on the end-effector, is endowed to a multirotor aerial platform enabling active manipulation capabilities. The proposed novel approach combines a visual processing scheme for object detection and tracking, as well as a manipulator positioning for allowing the aerial platform to approach the surface of interaction efficiently. In the developed scheme, the object detection is based on correlation filters to track the target robustly, while the depth information, from the stereo camera on board the manipulator, is used to extract the centroid of the manipulated object, compute its relative configuration with respect to the UAV and align the end-effector properly with the grasping point. The effectiveness of the proposed scheme is demonstrated in multiple experimental trials and simulations, highlighting it's applicability towards autonomous aerial manipulation.

On Vision Enabled Aerial Manipulation for Multirotors

Terreran, M;
2017

Abstract

This article presents an integrated vision-based guiding system for aerial manipulation. More specifically, a 4 DoF planar dexterous manipulator, with a stereo camera attached on the end-effector, is endowed to a multirotor aerial platform enabling active manipulation capabilities. The proposed novel approach combines a visual processing scheme for object detection and tracking, as well as a manipulator positioning for allowing the aerial platform to approach the surface of interaction efficiently. In the developed scheme, the object detection is based on correlation filters to track the target robustly, while the depth information, from the stereo camera on board the manipulator, is used to extract the centroid of the manipulated object, compute its relative configuration with respect to the UAV and align the end-effector properly with the grasping point. The effectiveness of the proposed scheme is demonstrated in multiple experimental trials and simulations, highlighting it's applicability towards autonomous aerial manipulation.
2017
22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
978-1-5090-6505-9
978-1-5090-6504-2
978-1-5090-6506-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3297367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 3
social impact