The aim of this work is to extend a result by Suzuki and Watson concerning an inverse property for caloric functions. Our result applies, in particular, to the heat operator on stratified Lie groups and to Kolmogorov-Fokker-Planck-type operators. We show that the open sets characterizing the solutions to the involved equations, in terms of suitable average operators, have to be the level sets of the fundamental solutions of the relevant operators. The technique adopted exploits the structure of the propagation sets, i.e., the sets where the solutions to the involved equations attain their maximum.

An inverse mean value property for evolution equations

Giulio Tralli
2014

Abstract

The aim of this work is to extend a result by Suzuki and Watson concerning an inverse property for caloric functions. Our result applies, in particular, to the heat operator on stratified Lie groups and to Kolmogorov-Fokker-Planck-type operators. We show that the open sets characterizing the solutions to the involved equations, in terms of suitable average operators, have to be the level sets of the fundamental solutions of the relevant operators. The technique adopted exploits the structure of the propagation sets, i.e., the sets where the solutions to the involved equations attain their maximum.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3299618
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact