A new implementation is proposed for including van der Waals (vdW) interactions in Density Functional Theory (DFT) using the Maximally Localized Wannier Functions (MLWFs), which is free from empirical parameters. With respect to the previous DFT/vdW-WF2 method, in the present DFT/vdW-WF2-x approach, the empirical, short-range, damping function is replaced by an estimate of the Pauli exchange repulsion, also obtained by the MLWF properties. Applications to systems contained in the popular S22 molecular database and to the case of an Ar atom interacting with graphite and comparison with reference data indicate that the new method, besides being more physically founded, also leads to a systematic improvement in the description of vdW-bonded systems.

van der Waals interactions in DFT using Wannier functions without empirical parameters

Silvestrelli, Pier Luigi
;
Ambrosetti, Alberto
2019

Abstract

A new implementation is proposed for including van der Waals (vdW) interactions in Density Functional Theory (DFT) using the Maximally Localized Wannier Functions (MLWFs), which is free from empirical parameters. With respect to the previous DFT/vdW-WF2 method, in the present DFT/vdW-WF2-x approach, the empirical, short-range, damping function is replaced by an estimate of the Pauli exchange repulsion, also obtained by the MLWF properties. Applications to systems contained in the popular S22 molecular database and to the case of an Ar atom interacting with graphite and comparison with reference data indicate that the new method, besides being more physically founded, also leads to a systematic improvement in the description of vdW-bonded systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3301972
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact