Near Field Communication (NFC) techniques are widely used within everyday activities, e.g., contactless payment systems or authentication. Regardless of the application typically the requirements on the antenna structure are manifold. Frequently limitations in the available space make the antenna design quite challenging especially if other conductive structures are close to the NFC antenna. In the present paper we propose to synthesize the geometry of proximity integrated circuit card (PICC) antennas according to class 6 in the presence of nearby metallic structures. The optimization relies on the differential evolution strategy. The computation of the forward problem is based on the partial element equivalent circuit (PEEC) method.

PEEC-Based Multi-Objective Synthesis of NFC Antennas in the Presence of Conductive Structures

Torchio, R
2019

Abstract

Near Field Communication (NFC) techniques are widely used within everyday activities, e.g., contactless payment systems or authentication. Regardless of the application typically the requirements on the antenna structure are manifold. Frequently limitations in the available space make the antenna design quite challenging especially if other conductive structures are close to the NFC antenna. In the present paper we propose to synthesize the geometry of proximity integrated circuit card (PICC) antennas according to class 6 in the presence of nearby metallic structures. The optimization relies on the differential evolution strategy. The computation of the forward problem is based on the partial element equivalent circuit (PEEC) method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3302397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact