This paper presents a multidisciplinary experiment where a population of neurons, dissociated from rat hippocampi, has been cultivated over a CMOS-based micro-electrode array (MEA) and its electrical activity has been detected and mapped by an advanced spike-sorting algorithm implemented on FPGA. MEAs are characterized by low signal-to-noise ratios caused by both the contactless sensing of weak extracellular voltages and the high noise power coming from cells and analog electronics signal processing. This low SNR forces to utilize advanced noise rejection algorithms to separate relevant neural activity from noise, which are usually implemented via software/off-line. However, off-line detection of neural spikes cannot be obviously used for real-time electrical stimulation. In this scenario, this paper presents a proper FPGA-based system capable to detect in real-time neural spikes from background noise. The output signals of the proposed system provide real-time spatial and temporal inf...
Neural spike digital detector on FPGA
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Vassanelli S.;Guarrera D.Software
;Rocchi F.Validation
;Collazuol G.Conceptualization
;
	
		
		
	
			2018
Abstract
This paper presents a multidisciplinary experiment where a population of neurons, dissociated from rat hippocampi, has been cultivated over a CMOS-based micro-electrode array (MEA) and its electrical activity has been detected and mapped by an advanced spike-sorting algorithm implemented on FPGA. MEAs are characterized by low signal-to-noise ratios caused by both the contactless sensing of weak extracellular voltages and the high noise power coming from cells and analog electronics signal processing. This low SNR forces to utilize advanced noise rejection algorithms to separate relevant neural activity from noise, which are usually implemented via software/off-line. However, off-line detection of neural spikes cannot be obviously used for real-time electrical stimulation. In this scenario, this paper presents a proper FPGA-based system capable to detect in real-time neural spikes from background noise. The output signals of the proposed system provide real-time spatial and temporal inf...| File | Dimensione | Formato | |
|---|---|---|---|
| electronics-07-00392.pdf accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										6.81 MB
									 
										Formato
										Adobe PDF
									 | 6.81 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




