Harrowing is a process that reduces the size of soil clods and prepares the field for seeding. Rotary harrows are a common piece of equipment in North Italy that consists of teeth rotating around a vertical axis with a processing depth of 5–15 cm. In this study, the topsoil movement in terms of distance and direction were estimated at different rotary harrow working conditions. A total of eight tests was performed using two forward speeds of 1 and 3 km/h, two working depths of 6 and 10 cm and two levelling bar positions of 0 and 10 cm from the ground. In order to simulate and follow topsoil movement, Radio-Frequency Identification (RFID) tags were inserted into cork stoppers and distributed in a regular pattern over the soil. Tags were distributed in six lines along the working width and repeated in three rows for each test: a total number of 144 tags was tracked. Results showed that there were no significant differences between the performed tests, on the other hand the reported tests highlight the effectiveness of the RFID monitoring approach. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
Assessing Top soil Movement in Rotary Harrowing Process by RFID (Radio-Frequency Identification) Technique
Kayad, Ahmed;Rainato, Riccardo;Picco, Lorenzo;Sartori, Luigi;Marinello, Francesco
2019
Abstract
Harrowing is a process that reduces the size of soil clods and prepares the field for seeding. Rotary harrows are a common piece of equipment in North Italy that consists of teeth rotating around a vertical axis with a processing depth of 5–15 cm. In this study, the topsoil movement in terms of distance and direction were estimated at different rotary harrow working conditions. A total of eight tests was performed using two forward speeds of 1 and 3 km/h, two working depths of 6 and 10 cm and two levelling bar positions of 0 and 10 cm from the ground. In order to simulate and follow topsoil movement, Radio-Frequency Identification (RFID) tags were inserted into cork stoppers and distributed in a regular pattern over the soil. Tags were distributed in six lines along the working width and repeated in three rows for each test: a total number of 144 tags was tracked. Results showed that there were no significant differences between the performed tests, on the other hand the reported tests highlight the effectiveness of the RFID monitoring approach. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.File | Dimensione | Formato | |
---|---|---|---|
Paper.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
3.13 MB
Formato
Adobe PDF
|
3.13 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.