Carbon capture and storage is widely recognised as a promising technology for decarbonising the energy and industrial sector. An integrated assessment of technological options is required for effective deployment of large-scale infrastructures between the nodes of production and sequestration of CO2. Additionally, design challenges due to uncertainties in the effective storage availability of sequestration basins must be tackled for the optimal planning of long-lived infrastructure. The objective of this study is to quantify the financial risks arising from geological uncertainties in European supply chain networks, whilst also providing a tool for minimising storage risk exposure. For this purpose, a methodological approach utilising mixed integer linear optimisation is developed and subsequent analysis demonstrates that risks arising from geological volumes are negligible compared to the overall network costs (always <1% of total cost) although they may be significant locally. The model shows that a slight increase in transport (+11%) and sequestration (+5%) costs is required to obtain a resilient supply chain, but the overall investment is substantially unchanged (max. +0.2%) with respect to a risk-neutral network. It is shown that risks in storage capacities can be minimised via careful design of the network, through distributing the investment for storage across Europe, and incorporating operational flexibility.

European supply chains for carbon capture, transport and sequestration, with uncertainties in geological storage capacity: Insights from economic optimisation

d'Amore F.;Bezzo F.
;
2019

Abstract

Carbon capture and storage is widely recognised as a promising technology for decarbonising the energy and industrial sector. An integrated assessment of technological options is required for effective deployment of large-scale infrastructures between the nodes of production and sequestration of CO2. Additionally, design challenges due to uncertainties in the effective storage availability of sequestration basins must be tackled for the optimal planning of long-lived infrastructure. The objective of this study is to quantify the financial risks arising from geological uncertainties in European supply chain networks, whilst also providing a tool for minimising storage risk exposure. For this purpose, a methodological approach utilising mixed integer linear optimisation is developed and subsequent analysis demonstrates that risks arising from geological volumes are negligible compared to the overall network costs (always <1% of total cost) although they may be significant locally. The model shows that a slight increase in transport (+11%) and sequestration (+5%) costs is required to obtain a resilient supply chain, but the overall investment is substantially unchanged (max. +0.2%) with respect to a risk-neutral network. It is shown that risks in storage capacities can be minimised via careful design of the network, through distributing the investment for storage across Europe, and incorporating operational flexibility.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3308837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact