Surface flow constructed wetlands (SFCWs) can be e↵ectively used to treat agricultural drainage waters, reducing N and P surface water pollution. In the Venice Lagoon drainage basin (northeastern Italy), an SFCW was monitored during 2007–2013 to assess its performance in reducing water, N, and P loads more than 10 years after its creation. Nitrogen concentrations showed peaks during winter due to intense leaching from surrounding fields. Phosphorus concentrations were higher after prolonged periods with no discharge, likely due to mobilization of P of the decomposing litter inside the basin. Over the entire period, N removal eciency was 83% for NO3–N and 79% for total N; P removal eciency was 48% for PO4–P and 67% for total P. Values were higher than in several other studies, likely due to the fluctuating hydroperiod that produced discontinuous and reduced outflows. Nitrogen outlet concentrations were reduced by the SFCW, and N removal ratios decreased with increasing hydraulic loading, while no strong correlations were found in the case of P. The SFCW was shown to be an e↵ective long-term strategy to increase water storage and reduce N and P loads in the Venice Lagoon drainage basin.

Multi-year N and P removal of a 10-year-old surface flow constructed wetland treating agricultural drainage waters

Tolomio M.
;
Dal Ferro N.;Borin M.
2019

Abstract

Surface flow constructed wetlands (SFCWs) can be e↵ectively used to treat agricultural drainage waters, reducing N and P surface water pollution. In the Venice Lagoon drainage basin (northeastern Italy), an SFCW was monitored during 2007–2013 to assess its performance in reducing water, N, and P loads more than 10 years after its creation. Nitrogen concentrations showed peaks during winter due to intense leaching from surrounding fields. Phosphorus concentrations were higher after prolonged periods with no discharge, likely due to mobilization of P of the decomposing litter inside the basin. Over the entire period, N removal eciency was 83% for NO3–N and 79% for total N; P removal eciency was 48% for PO4–P and 67% for total P. Values were higher than in several other studies, likely due to the fluctuating hydroperiod that produced discontinuous and reduced outflows. Nitrogen outlet concentrations were reduced by the SFCW, and N removal ratios decreased with increasing hydraulic loading, while no strong correlations were found in the case of P. The SFCW was shown to be an e↵ective long-term strategy to increase water storage and reduce N and P loads in the Venice Lagoon drainage basin.
2019
File in questo prodotto:
File Dimensione Formato  
Tolomio_Multi-Year N and P Removal of a 10-Year-Old Surface Flow Constructed Wetland_2019.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.64 MB
Formato Adobe PDF
3.64 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3308920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact