An angular analysis of the decay (B) over bar -> D*l(-)(nu) over bar (l), l is an element of {e, mu}, is reported using the full e(+) e(-) collision data set collected by the BABAR experiment at the Upsilon(4S) resonance. One B meson from the Upsilon(4S) -> B (B) over bar decay is fully reconstructed in a hadronic decay mode, which constrains the kinematics and provides a determination of the neutrino momentum vector. The kinematics of the semileptonic decay is described by the dilepton mass squared, q(2), and three angles. The first unbinned fit to the full four-dimensional decay rate in the standard model is performed in the so-called Boyd-Grinstein-Lebed approach, which employs a generic q(2) parametrization of the underlying form factors based on crossing symmetry, analyticity, and QCD dispersion relations for the amplitudes. A fit using the more model-dependent Caprini-Lellouch-Neubert (CLN) approach is performed as well. Our form factor shapes show deviations from previous fits based on the CLN parametrization. The latest form factors also provide an updated prediction for the branching fraction ratio R(D*) B((B) over bar -> D* tau(-)(nu) over bar (tau)) /B((B) over bar -> D*l(-)(nu) over bar (l)) = 0.253 +/- 0.005. Finally, using the well-measured branching fraction for the (B) over bar -> D*l(-)(nu) over bar (l) decay, a value of vertical bar V-cb vertical bar = (38.36 +/- 0.90) x 10(-3) is obtained that is consistent with the current world average for exclusive (B) over bar -> D(*)l(-)(nu) over bar (l) decays and remains in tension with the determination from inclusive semileptonic B decays to final states with charm.

Extraction of form Factors from a Four-Dimensional Angular Analysis of B[over ¯]→D^*ℓ^-ν[over ¯]_ℓ

Gaz A.;Margoni M.;Posocco M.;Simi G.;Simonetto F.;Stroili R.;
2019

Abstract

An angular analysis of the decay (B) over bar -> D*l(-)(nu) over bar (l), l is an element of {e, mu}, is reported using the full e(+) e(-) collision data set collected by the BABAR experiment at the Upsilon(4S) resonance. One B meson from the Upsilon(4S) -> B (B) over bar decay is fully reconstructed in a hadronic decay mode, which constrains the kinematics and provides a determination of the neutrino momentum vector. The kinematics of the semileptonic decay is described by the dilepton mass squared, q(2), and three angles. The first unbinned fit to the full four-dimensional decay rate in the standard model is performed in the so-called Boyd-Grinstein-Lebed approach, which employs a generic q(2) parametrization of the underlying form factors based on crossing symmetry, analyticity, and QCD dispersion relations for the amplitudes. A fit using the more model-dependent Caprini-Lellouch-Neubert (CLN) approach is performed as well. Our form factor shapes show deviations from previous fits based on the CLN parametrization. The latest form factors also provide an updated prediction for the branching fraction ratio R(D*) B((B) over bar -> D* tau(-)(nu) over bar (tau)) /B((B) over bar -> D*l(-)(nu) over bar (l)) = 0.253 +/- 0.005. Finally, using the well-measured branching fraction for the (B) over bar -> D*l(-)(nu) over bar (l) decay, a value of vertical bar V-cb vertical bar = (38.36 +/- 0.90) x 10(-3) is obtained that is consistent with the current world average for exclusive (B) over bar -> D(*)l(-)(nu) over bar (l) decays and remains in tension with the determination from inclusive semileptonic B decays to final states with charm.
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.123.091801.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 333.65 kB
Formato Adobe PDF
333.65 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3309293
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 27
social impact