For a series of organonitrile [RCN (R = Me, CF3, Ph, CH3Ph, CF3Ph)] ligands, the nature of the N–Pt bond in the related cis-/trans-(RCN)2PtCl2 complexes has been computationally investigated by Density Functional Theory. A fragment based bond analysis has been performed in the canonical Kohn–Sham molecular orbitals framework, and it has been ultimately assessed that this bond is characterized both by N→Pt σ and by N←Pt π contributions. Voronoi Deformation Density charges further confirms the occurrence of N←Pt π interactions. Moreover, the Energy Decomposition Analysis-Natural Orbital for Chemical Valence (EDA-NOCV) method shows that the strength of the N←Pt π interaction is not negligible by contributing to about 30–40% of the total orbital interaction. Finally, the well-known νCuN blue-shift occurring upon coordination to PtII, has been thoroughly investigated by exploiting the EDA-NOCV and by evaluating νCuN and force constants. The origin of the νCuN blue-shift in these systems has been discussed on the basis of the CN bond polarization. N←Pt π backbonding causes only a systematic decrease of the observed νCuN blue-shift when compared to the one calculated for RCN–X (X = H+, alkaline, earth-alkaline and transition metal ions, Lewis acids) herein reported (X = purely σ acceptors.

New light on an old debate: Does the RCN-PtCl2 bond include any back-donation? RCN←PtCl2 backbonding: Vs. the IR ν CN blue-shift dichotomy in organonitriles-platinum(II) complexes. A thorough density functional theory-energy decomposition analysis study

Carlotto S.
Investigation
;
Sgarbossa P.
Investigation
;
Bertani R.
Investigation
;
Casarin M.
Investigation
2019

Abstract

For a series of organonitrile [RCN (R = Me, CF3, Ph, CH3Ph, CF3Ph)] ligands, the nature of the N–Pt bond in the related cis-/trans-(RCN)2PtCl2 complexes has been computationally investigated by Density Functional Theory. A fragment based bond analysis has been performed in the canonical Kohn–Sham molecular orbitals framework, and it has been ultimately assessed that this bond is characterized both by N→Pt σ and by N←Pt π contributions. Voronoi Deformation Density charges further confirms the occurrence of N←Pt π interactions. Moreover, the Energy Decomposition Analysis-Natural Orbital for Chemical Valence (EDA-NOCV) method shows that the strength of the N←Pt π interaction is not negligible by contributing to about 30–40% of the total orbital interaction. Finally, the well-known νCuN blue-shift occurring upon coordination to PtII, has been thoroughly investigated by exploiting the EDA-NOCV and by evaluating νCuN and force constants. The origin of the νCuN blue-shift in these systems has been discussed on the basis of the CN bond polarization. N←Pt π backbonding causes only a systematic decrease of the observed νCuN blue-shift when compared to the one calculated for RCN–X (X = H+, alkaline, earth-alkaline and transition metal ions, Lewis acids) herein reported (X = purely σ acceptors.
2019
File in questo prodotto:
File Dimensione Formato  
c9dt02440a.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3309751
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact