Tannin based rigid foams are structures in which flavonoids are randomly cross-linked with furanic units throughout covalent bonds. The use of these aromatic substrates from natural materials to trap some heavy metal ions dissolved in water solutions is described. Interesting results have been achieved using different mimosa bark tannin (Acacia mearnsii formerly mollissima, De Wildt) and pine bark tannin (Pinus radiata) mixed foams. Capability to catch Pb2+ and Cu2+ ions at different concentrations has been verified throughout ICP-OES analysis of the foams. A reliable proportionality has been found between initial concentration and percentage of metal ions adsorbed. These foams were able to adsorb up to 12.5% of Cu(II) and 20.1% of Pb(II) with respect to the concentration of these ions in solution. © 2008 Elsevier B.V. All rights reserved.

Metal adsorption of tannin based rigid foams

Tondi G;
2009

Abstract

Tannin based rigid foams are structures in which flavonoids are randomly cross-linked with furanic units throughout covalent bonds. The use of these aromatic substrates from natural materials to trap some heavy metal ions dissolved in water solutions is described. Interesting results have been achieved using different mimosa bark tannin (Acacia mearnsii formerly mollissima, De Wildt) and pine bark tannin (Pinus radiata) mixed foams. Capability to catch Pb2+ and Cu2+ ions at different concentrations has been verified throughout ICP-OES analysis of the foams. A reliable proportionality has been found between initial concentration and percentage of metal ions adsorbed. These foams were able to adsorb up to 12.5% of Cu(II) and 20.1% of Pb(II) with respect to the concentration of these ions in solution. © 2008 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3313460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 124
  • ???jsp.display-item.citation.isi??? 103
  • OpenAlex ND
social impact