Palladium catalysts supported by a mesoporous form of sulfonated poly-divinylbenzene, Pd/µS-pDVB10 (1%, w/w) and Pd/µS-pDVB35 (3.6% w/w), were applied to the direct synthesis of hydrogen peroxide from dihydrogen and dioxygen. The reaction was carried for 4 h out in a semibatch reactor with continuous feed of the gas mixture (H2/O2 = 1/24, v/v; total flow rate 25 mL·min−1), at 25 °C and 101 kPa. The catalytic performances were compared with those of a commercial egg-shell Pd/C catalyst (1%, w/w) and of a palladium catalyst supported by a macroreticular sulfonated ion-exchange resin, Pd/mS-pSDVB10 (1%, w/w). Pd/µS-pDVB10 and Pd/C showed the highest specific activity (H2 consumption rate of about 75–80 h−1), but the resin supported catalyst was much more selective (ca 50% with no promoters). The nanoparticles (NP) size was somewhat larger in Pd/µS-pDVB10, showing that either the reaction was structure insensitive or diffusion limited to some extent over Pd/C, in which the support is microporous. The open pore structure of Pd/µS-pDVB10, possibly ensuring the fast removal of H2O2 from the catalyst, could also be the cause of the relatively high selectivity of this catalyst. In summary, Pd/µS-pDVB10 was the most productive catalyst, forming ca 375 molH2O2·kgPd−1·h−1, also because it retained a constant selectivity, while the other ones underwent a more or less pronounced loss of selectivity after 80–90 min. Ageing experiments showed that for a palladium catalyst supported on sulfonated mesoporous poly-divinylbenzene storage under oxidative conditions implied some deactivation, but a lower drop in the selectivity; regeneration upon a reductive treatment or storage under strictly anaerobic conditions (dry-box) lead to an increase of the activity but to both a lower initial selectivity and a higher drop of selectivity with time.

Direct Synthesis of Hydrogen Peroxide under Semi-Batch Conditions over Un-Promoted Palladium Catalysts Supported by Ion-Exchange Sulfonated Resins: Effects of the Support Morphology

FRISON, FRANCESCO;DALLA VALLE, CHIARA;Centomo, Paolo
;
Zecca, Marco
2019

Abstract

Palladium catalysts supported by a mesoporous form of sulfonated poly-divinylbenzene, Pd/µS-pDVB10 (1%, w/w) and Pd/µS-pDVB35 (3.6% w/w), were applied to the direct synthesis of hydrogen peroxide from dihydrogen and dioxygen. The reaction was carried for 4 h out in a semibatch reactor with continuous feed of the gas mixture (H2/O2 = 1/24, v/v; total flow rate 25 mL·min−1), at 25 °C and 101 kPa. The catalytic performances were compared with those of a commercial egg-shell Pd/C catalyst (1%, w/w) and of a palladium catalyst supported by a macroreticular sulfonated ion-exchange resin, Pd/mS-pSDVB10 (1%, w/w). Pd/µS-pDVB10 and Pd/C showed the highest specific activity (H2 consumption rate of about 75–80 h−1), but the resin supported catalyst was much more selective (ca 50% with no promoters). The nanoparticles (NP) size was somewhat larger in Pd/µS-pDVB10, showing that either the reaction was structure insensitive or diffusion limited to some extent over Pd/C, in which the support is microporous. The open pore structure of Pd/µS-pDVB10, possibly ensuring the fast removal of H2O2 from the catalyst, could also be the cause of the relatively high selectivity of this catalyst. In summary, Pd/µS-pDVB10 was the most productive catalyst, forming ca 375 molH2O2·kgPd−1·h−1, also because it retained a constant selectivity, while the other ones underwent a more or less pronounced loss of selectivity after 80–90 min. Ageing experiments showed that for a palladium catalyst supported on sulfonated mesoporous poly-divinylbenzene storage under oxidative conditions implied some deactivation, but a lower drop in the selectivity; regeneration upon a reductive treatment or storage under strictly anaerobic conditions (dry-box) lead to an increase of the activity but to both a lower initial selectivity and a higher drop of selectivity with time.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3314071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact