In complex contexts, people need to adapt their behavior to interact with the surrounding environment to reach the intended destination or avert collisions. Motion dynamics should therefore include both social and kinematic rules. The proposed analysis aims at defining a linear dynamic model to predict future positions of different types of agents, namely pedestrians and cyclists, observing a limited number of frames. The dynamics are defined in terms of artificial potentials fields (APFs) obtained by static (e.g., walls, doors or benches) and dynamic (e.g, other agents) elements to produce attractive and repulsive forces that influence the motion. A linear combination of such forces affects the resulting behavior. We exploit the context using a semantic scene segmentation to derive static forces while the interactions between agents are defined in terms of their reciprocal physical distances. We conduct experiments both on synthetic and on subsets of publicly available datasets to corroborate the proposed model.

Linear Artificial Forces for Human Dynamics in Complex Contexts

Pasquale Coscia
;
Lamberto Ballan;
2020

Abstract

In complex contexts, people need to adapt their behavior to interact with the surrounding environment to reach the intended destination or avert collisions. Motion dynamics should therefore include both social and kinematic rules. The proposed analysis aims at defining a linear dynamic model to predict future positions of different types of agents, namely pedestrians and cyclists, observing a limited number of frames. The dynamics are defined in terms of artificial potentials fields (APFs) obtained by static (e.g., walls, doors or benches) and dynamic (e.g, other agents) elements to produce attractive and repulsive forces that influence the motion. A linear combination of such forces affects the resulting behavior. We exploit the context using a semantic scene segmentation to derive static forces while the interactions between agents are defined in terms of their reciprocal physical distances. We conduct experiments both on synthetic and on subsets of publicly available datasets to corroborate the proposed model.
2020
Neural Approaches to Dynamics of Signal Exchanges
978-981-13-8949-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3314268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact