An elliptic partial differential equation with a singular forcing term, describing a steady state flow determined by a pulse-like extraction at a constant volumetric rate, is approximated by a radial basis function approach which takes advantage of decomposing the original domain. The discretization error of such scheme is numerically estimated and we also face up to instability issues. This produces an effective tool for real applications, as confirmed by comparisons with classical grid-based approaches.
A stable meshfree PDE solver for source-type flows in porous media
S. De Marchi;E. Perracchione;
2020
Abstract
An elliptic partial differential equation with a singular forcing term, describing a steady state flow determined by a pulse-like extraction at a constant volumetric rate, is approximated by a radial basis function approach which takes advantage of decomposing the original domain. The discretization error of such scheme is numerically estimated and we also face up to instability issues. This produces an effective tool for real applications, as confirmed by comparisons with classical grid-based approaches.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
APNUM19_NA_PD_reviewed.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Accesso libero
Dimensione
412.09 kB
Formato
Adobe PDF
|
412.09 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.