Current NGS techniques are becoming exponentially cheaper. As a result, there is an exponential growth of genomic data unfortunately not followed by an exponential growth of storage, leading to the necessity of compression. Most of the entropy of NGS data lies in the quality values associated to each read. Those values are often more diversified than necessary. Because of that, many tools such as Quartz or GeneCodeq, try to change (smooth) quality scores in order to improve compressibility without altering the important information they carry for downstream analysis like SNP calling.
Better quality score compression through sequence-based quality smoothing
Shibuya, Yoshihiro;Comin, Matteo
2019
Abstract
Current NGS techniques are becoming exponentially cheaper. As a result, there is an exponential growth of genomic data unfortunately not followed by an exponential growth of storage, leading to the necessity of compression. Most of the entropy of NGS data lies in the quality values associated to each read. Those values are often more diversified than necessary. Because of that, many tools such as Quartz or GeneCodeq, try to change (smooth) quality scores in order to improve compressibility without altering the important information they carry for downstream analysis like SNP calling.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s12859-019-2883-5.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.