urpose: The current study aims to propose a new analytical approach by considering energy consumption (EC), maximum tardiness and completion time as the primary objective functions to assess the performance of parallel, non-bottleneck and multitasking machines operating in dynamic job shops. Design/methodology/approach: An analytical and iterative method is presented to optimize a novel dynamic job shop under technical constraints. The machine’s performance is analyzed by considering the setup energy. An optimization model from initial processing until scheduling and planning is proposed, and data sets consisting of design parameters are fed into the model. Findings: Significant variations of EC and tardiness are observed. The minimum EC was calculated to be 141.5 hp.s when the defined decision variables were constantly increasing. Analysis of the optimum completion time has shown that among all studied methods, first come first served (FCFS), earliest due date (EDD) and shortest processing time (SPT) have resulted in the least completion time with a value of 20 s. Originality/value: Considerable amount of energy can be dissipated when parallel, non-bottleneck and multitasking machines operate in lower-power modes. Additionally, in a dynamic job shop, adjusting the trend and arrangement of decision variables plays a crucial role in enhancing the system’s reliability. Such issues have never caught the attention of scientists for addressing the aforementioned problems. Therefore, with these underlying goals, this paper presents a new approach for evaluating and optimizing the system’s performance, considering different objective functions and technical constraints.

A new approach for performance assessment of parallel and non-bottleneck machines in a dynamic job shop environment

Faccio M.;Nedaei M.;
2019

Abstract

urpose: The current study aims to propose a new analytical approach by considering energy consumption (EC), maximum tardiness and completion time as the primary objective functions to assess the performance of parallel, non-bottleneck and multitasking machines operating in dynamic job shops. Design/methodology/approach: An analytical and iterative method is presented to optimize a novel dynamic job shop under technical constraints. The machine’s performance is analyzed by considering the setup energy. An optimization model from initial processing until scheduling and planning is proposed, and data sets consisting of design parameters are fed into the model. Findings: Significant variations of EC and tardiness are observed. The minimum EC was calculated to be 141.5 hp.s when the defined decision variables were constantly increasing. Analysis of the optimum completion time has shown that among all studied methods, first come first served (FCFS), earliest due date (EDD) and shortest processing time (SPT) have resulted in the least completion time with a value of 20 s. Originality/value: Considerable amount of energy can be dissipated when parallel, non-bottleneck and multitasking machines operate in lower-power modes. Additionally, in a dynamic job shop, adjusting the trend and arrangement of decision variables plays a crucial role in enhancing the system’s reliability. Such issues have never caught the attention of scientists for addressing the aforementioned problems. Therefore, with these underlying goals, this paper presents a new approach for evaluating and optimizing the system’s performance, considering different objective functions and technical constraints.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3317311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact