Using N-body simulations, we study the structures induced on a galactic disc by repeated flybys of a companion in decaying eccentric orbit around the disc. Our system is composed of a stellar disc, bulge and live dark matter halo, and we study the system's dynamical response to a sequence of a companion's flybys, when we vary (i) the disc's temperature (parametrized by Toomre's Q-parameter) and (ii) the companion's mass and initial orbit. We use a new 3D Cartesian grid code: MAIN (Mesh-adaptive Approximate Inverse N-body solver). The main features of MAIN are reviewed, with emphasis on the use of a new Symmetric Factored Approximate Sparse Inverse matrix in conjunction with the multigrid method that allows the efficient solution of Poisson's equation in three space variables. We find that (i) companions need to be assigned initial masses in a rather narrow window of values in order to produce significant and more long-standing non-axisymmetric structures (bars and spirals) in the main galaxy's disc by the repeated flyby mechanism. (ii) A crucial phenomenon is the antagonism between companion-excited and self-excited modes on the disc. Values of Q > 1.5 are needed in order to allow for the growth of the companion-excited modes to prevail over the growth of the disc's self-excited modes. (iii) We give evidence that the companion-induced spiral structure is best represented by a density wave with pattern speed nearly constant in a region extending from the inner Lindblad resonance to a radius close to, but inside, corotation.

Structures induced by companions in galactic discs

Efthymiopoulos C.;
2016

Abstract

Using N-body simulations, we study the structures induced on a galactic disc by repeated flybys of a companion in decaying eccentric orbit around the disc. Our system is composed of a stellar disc, bulge and live dark matter halo, and we study the system's dynamical response to a sequence of a companion's flybys, when we vary (i) the disc's temperature (parametrized by Toomre's Q-parameter) and (ii) the companion's mass and initial orbit. We use a new 3D Cartesian grid code: MAIN (Mesh-adaptive Approximate Inverse N-body solver). The main features of MAIN are reviewed, with emphasis on the use of a new Symmetric Factored Approximate Sparse Inverse matrix in conjunction with the multigrid method that allows the efficient solution of Poisson's equation in three space variables. We find that (i) companions need to be assigned initial masses in a rather narrow window of values in order to produce significant and more long-standing non-axisymmetric structures (bars and spirals) in the main galaxy's disc by the repeated flyby mechanism. (ii) A crucial phenomenon is the antagonism between companion-excited and self-excited modes on the disc. Values of Q > 1.5 are needed in order to allow for the growth of the companion-excited modes to prevail over the growth of the disc's self-excited modes. (iii) We give evidence that the companion-induced spiral structure is best represented by a density wave with pattern speed nearly constant in a region extending from the inner Lindblad resonance to a radius close to, but inside, corotation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3323209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact