We present an analysis of three southern open star clusters NGC 6067, NGC 2506, and IC 4651 using wide-field photometric and Gaia DR2 astrometric data. They are poorly studied clusters. We took advantage of the synergy between Gaia DR2 high precision astrometric measurements and ground-based wide-field photometry to isolate cluster members and further study these clusters. We identify the cluster members using proper motions, parallax and colour–magnitude diagrams. Mean proper motion of the clusters in μαcosδ and μδ is estimated as −1.90 ± 0.01 and −2.57 ± 0.01 mas yr−1 for NGC 6067, −2.57 ± 0.01, and 3.92 ± 0.01 mas yr−1 for NGC 2506 and −2.41 ± 0.01 and −5.05 ± 0.02 mas yr−1 for IC 4651. Distances are estimated as 3.01 ± 0.87, 3.88 ± 0.42, and 1.00 ± 0.08 kpc for the clusters NGC 6067, NGC 2506, and IC 4651, respectively, using parallaxes taken from Gaia DR2 catalogue. Galactic orbits are determined for these clusters using Galactic potential models. We find that these clusters have circular orbits. Cluster radii are determined as 10 arcmin for NGC 6067, 12 arcmin for NGC 2506, and 11 arcmin for IC 4651. Ages of the clusters estimated by isochrones fitting are 66 ± 8 Myr, 2.09 ± 0.14 Gyr, and 1.59 ± 0.14 Gyr for NGC 6067, NGC 2506, and IC 4651, respectively. Mass function slope for the entire region of cluster NGC 2506 is found to be comparable with the Salpeter value in the mass range of 0.77–1.54 M. The mass function analysis shows that the slope becomes flat when one goes from halo to core region in all the three clusters. A comparison of dynamical age with cluster’s age indicates that NGC 2506 and IC 4651 are dynamically relaxed clusters.
Astrometric and photometric study of NGC 6067, NGC 2506, and IC 4651 open clusters based on wide-field ground and Gaia DR2 data
Nardiello D.
2019
Abstract
We present an analysis of three southern open star clusters NGC 6067, NGC 2506, and IC 4651 using wide-field photometric and Gaia DR2 astrometric data. They are poorly studied clusters. We took advantage of the synergy between Gaia DR2 high precision astrometric measurements and ground-based wide-field photometry to isolate cluster members and further study these clusters. We identify the cluster members using proper motions, parallax and colour–magnitude diagrams. Mean proper motion of the clusters in μαcosδ and μδ is estimated as −1.90 ± 0.01 and −2.57 ± 0.01 mas yr−1 for NGC 6067, −2.57 ± 0.01, and 3.92 ± 0.01 mas yr−1 for NGC 2506 and −2.41 ± 0.01 and −5.05 ± 0.02 mas yr−1 for IC 4651. Distances are estimated as 3.01 ± 0.87, 3.88 ± 0.42, and 1.00 ± 0.08 kpc for the clusters NGC 6067, NGC 2506, and IC 4651, respectively, using parallaxes taken from Gaia DR2 catalogue. Galactic orbits are determined for these clusters using Galactic potential models. We find that these clusters have circular orbits. Cluster radii are determined as 10 arcmin for NGC 6067, 12 arcmin for NGC 2506, and 11 arcmin for IC 4651. Ages of the clusters estimated by isochrones fitting are 66 ± 8 Myr, 2.09 ± 0.14 Gyr, and 1.59 ± 0.14 Gyr for NGC 6067, NGC 2506, and IC 4651, respectively. Mass function slope for the entire region of cluster NGC 2506 is found to be comparable with the Salpeter value in the mass range of 0.77–1.54 M. The mass function analysis shows that the slope becomes flat when one goes from halo to core region in all the three clusters. A comparison of dynamical age with cluster’s age indicates that NGC 2506 and IC 4651 are dynamically relaxed clusters.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.