A subset S of a group G invariably generates G if, when each element of S is replaced by an arbitrary conjugate, the resulting set generates G. An invariable generating set X of G is called minimal if no proper subset of X invariably generates G. We will address several questions related to the behaviour of minimal invariable generating sets of a finite group.
Minimal invariable generating sets
Garzoni D.;Lucchini A.
2020
Abstract
A subset S of a group G invariably generates G if, when each element of S is replaced by an arbitrary conjugate, the resulting set generates G. An invariable generating set X of G is called minimal if no proper subset of X invariably generates G. We will address several questions related to the behaviour of minimal invariable generating sets of a finite group.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
lucchini garzoni.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso libero
Dimensione
546.91 kB
Formato
Adobe PDF
|
546.91 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




