A subset S of a group G invariably generates G if, when each element of S is replaced by an arbitrary conjugate, the resulting set generates G. An invariable generating set X of G is called minimal if no proper subset of X invariably generates G. We will address several questions related to the behaviour of minimal invariable generating sets of a finite group.

Minimal invariable generating sets

Garzoni D.;Lucchini A.
2020

Abstract

A subset S of a group G invariably generates G if, when each element of S is replaced by an arbitrary conjugate, the resulting set generates G. An invariable generating set X of G is called minimal if no proper subset of X invariably generates G. We will address several questions related to the behaviour of minimal invariable generating sets of a finite group.
File in questo prodotto:
File Dimensione Formato  
lucchini garzoni.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso libero
Dimensione 546.91 kB
Formato Adobe PDF
546.91 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3325624
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact