In this study, a series of new epoxy/clay nanocomposites (ECN) has been prepared and characterized in order to investigate the properties and compare the effect of the unmodified Moroccan clay on the structure and properties of the composite materials. Five natural clays have been used to reinforce the neat epoxy resin with 1% wt and 5% wt achieving the clay dispersion only through strong milling and mechanical stirring without previous organic modifications of the clays. The quality of clay dispersion in the epoxy matrix and the morphology of nanocomposites have been studied by transmission electron microscopy (TEM), environmental scanning electron microscopy (ESEM), and X-ray diffraction (XRD). The mechanical and thermal properties have also been investigated. The antimicrobial activity of the nanocomposites has been tested against E. coli and S. aureus in order to evaluate their applicability as advanced antimicrobial materials. The results showed that the epoxy/crude clay nanocomposites exhibited a high inhibition action attending 99% against both bacteria in the case of the clay labeled A5.

Multifunctional Epoxy/Nanocomposites Based on Natural Moroccan Clays with High Antimicrobial Activity: Morphological, Thermal and Mechanical Properties

Monsif M.
Investigation
;
Bertani R.
Conceptualization
;
Bartolozzi A.
Investigation
;
Zorzi F.
Investigation
;
Zappalorto M.
Conceptualization
;
Quaresimin M.
Conceptualization
;
Sgarbossa P.
Investigation
2019

Abstract

In this study, a series of new epoxy/clay nanocomposites (ECN) has been prepared and characterized in order to investigate the properties and compare the effect of the unmodified Moroccan clay on the structure and properties of the composite materials. Five natural clays have been used to reinforce the neat epoxy resin with 1% wt and 5% wt achieving the clay dispersion only through strong milling and mechanical stirring without previous organic modifications of the clays. The quality of clay dispersion in the epoxy matrix and the morphology of nanocomposites have been studied by transmission electron microscopy (TEM), environmental scanning electron microscopy (ESEM), and X-ray diffraction (XRD). The mechanical and thermal properties have also been investigated. The antimicrobial activity of the nanocomposites has been tested against E. coli and S. aureus in order to evaluate their applicability as advanced antimicrobial materials. The results showed that the epoxy/crude clay nanocomposites exhibited a high inhibition action attending 99% against both bacteria in the case of the clay labeled A5.
2019
File in questo prodotto:
File Dimensione Formato  
2810901.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3326211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact