We investigate the “TT¯ ” deformations of two-dimensional supersymmetric quantum field theories. More precisely, we show that, by using the conservation equations for the supercurrent multiplet, the TT¯ deforming operator can be constructed as a super-symmetric descendant. Here we focus on N=(10) and N=(11) supersymmetry. As an example, we analyse in detail the TT¯ deformation of a free N=(10) supersymmetric action. We also argue that the link between TT¯ and string theory can be extended to su-perstrings: by analysing the light-cone gauge fixing for superstrings in flat space, we show the correspondence of the string action to the TT¯ deformation of a free theory of eight N=(11) scalar multiplets on the nose. We comment on how these constructions relate to the geometrical interpretations of TT¯ deformations that have recently been discussed in the literature.
On TT¯ deformations and supersymmetry
Sfondrini A.;
2019
Abstract
We investigate the “TT¯ ” deformations of two-dimensional supersymmetric quantum field theories. More precisely, we show that, by using the conservation equations for the supercurrent multiplet, the TT¯ deforming operator can be constructed as a super-symmetric descendant. Here we focus on N=(10) and N=(11) supersymmetry. As an example, we analyse in detail the TT¯ deformation of a free N=(10) supersymmetric action. We also argue that the link between TT¯ and string theory can be extended to su-perstrings: by analysing the light-cone gauge fixing for superstrings in flat space, we show the correspondence of the string action to the TT¯ deformation of a free theory of eight N=(11) scalar multiplets on the nose. We comment on how these constructions relate to the geometrical interpretations of TT¯ deformations that have recently been discussed in the literature.| File | Dimensione | Formato | |
|---|---|---|---|
|
scoap3-fulltext(2).pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
661.64 kB
Formato
Adobe PDF
|
661.64 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




