Given an arbitrary spectral space X, we consider the set X(X) of all nonempty subsets of X that are closed with respect to the inverse topology. We introduce a Zariski-like topology on X(X) and, after observing that it coincides the upper Vietoris topology, we prove that X(X) is itself a spectral space, that this construction is functorial, and that X(X) provides an extension of X in a more “complete” spectral space. Among the applications, we show that, starting from an integral domain D, X(Spec(D)) is homeomorphic to the (spectral) space of all the stable semistar operations of finite type on D.

The upper Vietoris topology on the space of inverse-closed subsets of a spectral space and applications

Finocchiaro C. A.;Spirito D.
2018

Abstract

Given an arbitrary spectral space X, we consider the set X(X) of all nonempty subsets of X that are closed with respect to the inverse topology. We introduce a Zariski-like topology on X(X) and, after observing that it coincides the upper Vietoris topology, we prove that X(X) is itself a spectral space, that this construction is functorial, and that X(X) provides an extension of X in a more “complete” spectral space. Among the applications, we show that, starting from an integral domain D, X(Spec(D)) is homeomorphic to the (spectral) space of all the stable semistar operations of finite type on D.
File in questo prodotto:
File Dimensione Formato  
finale-rmj.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 227.19 kB
Formato Adobe PDF
227.19 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3329799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact