Intersystem crossing (ISC) was observed for naphthalimide (NI)-derived Troger's base, and the ISC was confirmed to occur by a spin-orbital charge-transfer (SOCT) mechanism. Conventional electron donor/acceptor dyads showing SOCT-ISC have semirigid linkers. In contrast, the linker between the two chromophores in Troger's base is rigid and torsion is completely inhibited, which is beneficial for efficient SOCT-ISC. Femtosecond transient absorption (TA) spectra demonstrated charge-separation and charge-recombination-induced ISC processes. Nanosecond TA spectroscopy confirmed the ISC, and the triplet state is long-lived (46 mu s, room temperature). The ISC quantum yield is dependent on solvent polarity (8-41 %). The triplet state was studied by pulsed-laser-excited time-resolved EPR spectroscopy, and both the NI-localized triplet state and triplet charge-transfer state were observed, which is in good agreement with the spin-density analysis. The Troger's base was confirmed to be a potent photodynamic therapy reagent with HeLa cells (EC50=5.0 nm).
Efficient Intersystem Crossing in Tröger's Base Derived From 4‐Amino‐1,8‐Naphthalimide and Application as Potent PDT Reagent
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Zhao, Jianzhang
						
						
						
							Supervision
;Barbon, Antonio
						
						
						
							Writing – Review & Editing
;
	
		
		
	
			2020
Abstract
Intersystem crossing (ISC) was observed for naphthalimide (NI)-derived Troger's base, and the ISC was confirmed to occur by a spin-orbital charge-transfer (SOCT) mechanism. Conventional electron donor/acceptor dyads showing SOCT-ISC have semirigid linkers. In contrast, the linker between the two chromophores in Troger's base is rigid and torsion is completely inhibited, which is beneficial for efficient SOCT-ISC. Femtosecond transient absorption (TA) spectra demonstrated charge-separation and charge-recombination-induced ISC processes. Nanosecond TA spectroscopy confirmed the ISC, and the triplet state is long-lived (46 mu s, room temperature). The ISC quantum yield is dependent on solvent polarity (8-41 %). The triplet state was studied by pulsed-laser-excited time-resolved EPR spectroscopy, and both the NI-localized triplet state and triplet charge-transfer state were observed, which is in good agreement with the spin-density analysis. The Troger's base was confirmed to be a potent photodynamic therapy reagent with HeLa cells (EC50=5.0 nm).| File | Dimensione | Formato | |
|---|---|---|---|
| ChemEurJ_Troger_Zhao_Accept.pdf accesso aperto 
											Tipologia:
											Accepted (AAM - Author's Accepted Manuscript)
										 
											Licenza:
											
											
												Accesso gratuito
												
												
												
											
										 
										Dimensione
										3.77 MB
									 
										Formato
										Adobe PDF
									 | 3.77 MB | Adobe PDF | Visualizza/Apri | 
| ChemEurJ_Troger_Zhao_Accept.pdf accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
											Licenza:
											
											
												Altro
												
												
												
											
										 
										Dimensione
										3.77 MB
									 
										Formato
										Adobe PDF
									 | 3.77 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




