Iridium complexes [IrClCp∗diNHC]PF6, with N-heterocyclic dicarbene (diNHC) and pentamethylcyclopentadienyl (Cp∗) ligands, have been investigated in light driven water oxidation catalysis within the Ru(bpy)32+/S2O82- cycle (bpy = 2,2′-bipyridine). In particular, the effect of different diNHC ligands was evaluated by employing the complex 1a (diNHC = 1,1′-dimethyl-3,3′-ethylenediimidazol-2,2′-diylidene) and the novel and structurally characterised 2 (diNHC = 1,1'-dimethyl-3,3′-ethylene-5,5′-dibromodiimidazol-2,2′-diylidene) and 3 (diNHC = 1,1′-dimethyl-3,3'-ethylene-dibenzimidazol-2,2′-diylidene). The presented results include: (i) a photon management analysis of the 1a/Ru(bpy)32+/S2O82- system, revealing two regimes of O2 evolution rate, being dependent on the light intensity at low photon flux, where the system reaches an overall quantum yield up to 0.17 ± 0.01 (quantum efficiency 34 ± 2%), while being independent of light intensity at high photon flux thus indicating a change of limiting step; (ii) a trend of O2 evolution activity that follows the order 1a > 2 > 3 both under low and high photon flux conditions, with the reactivity that is favoured by the electron donating nature of the diNHC ligand, quantified on the basis of the carbene carbon chemical shift; (iii) an analogous trend also in the bimolecular rate constants of electron transfer kET from the iridium species to photogenerated Ru(bpy)33+, with kET values in the range 4.2-6.1 × 104 M-1 s-1, thus implying a significant reorganisation energy to the iridium sphere; (iv) the evolution of 1a, as the most active Ir species in the series, to mononuclear iridium species with lower molecular weight and originating from oxidative transformation of the organic ligand scaffold, as proven by converging UV-Vis, MALDI-MS and 1H-NMR evidences. These results can be used for the further design and engineering of novel catalysts.

Novel iridium complexes with N-heterocyclic dicarbene ligands in light-driven water oxidation catalysis: photon management, ligand effect and catalyst evolution

Volpe A.;Sartorel A.
;
Tubaro C.
;
Bonchio M.
2020

Abstract

Iridium complexes [IrClCp∗diNHC]PF6, with N-heterocyclic dicarbene (diNHC) and pentamethylcyclopentadienyl (Cp∗) ligands, have been investigated in light driven water oxidation catalysis within the Ru(bpy)32+/S2O82- cycle (bpy = 2,2′-bipyridine). In particular, the effect of different diNHC ligands was evaluated by employing the complex 1a (diNHC = 1,1′-dimethyl-3,3′-ethylenediimidazol-2,2′-diylidene) and the novel and structurally characterised 2 (diNHC = 1,1'-dimethyl-3,3′-ethylene-5,5′-dibromodiimidazol-2,2′-diylidene) and 3 (diNHC = 1,1′-dimethyl-3,3'-ethylene-dibenzimidazol-2,2′-diylidene). The presented results include: (i) a photon management analysis of the 1a/Ru(bpy)32+/S2O82- system, revealing two regimes of O2 evolution rate, being dependent on the light intensity at low photon flux, where the system reaches an overall quantum yield up to 0.17 ± 0.01 (quantum efficiency 34 ± 2%), while being independent of light intensity at high photon flux thus indicating a change of limiting step; (ii) a trend of O2 evolution activity that follows the order 1a > 2 > 3 both under low and high photon flux conditions, with the reactivity that is favoured by the electron donating nature of the diNHC ligand, quantified on the basis of the carbene carbon chemical shift; (iii) an analogous trend also in the bimolecular rate constants of electron transfer kET from the iridium species to photogenerated Ru(bpy)33+, with kET values in the range 4.2-6.1 × 104 M-1 s-1, thus implying a significant reorganisation energy to the iridium sphere; (iv) the evolution of 1a, as the most active Ir species in the series, to mononuclear iridium species with lower molecular weight and originating from oxidative transformation of the organic ligand scaffold, as proven by converging UV-Vis, MALDI-MS and 1H-NMR evidences. These results can be used for the further design and engineering of novel catalysts.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3339638
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact