Recently there have been several proposals for `eco-driving assistance systems', designed to save fuel or electrical power by encouraging behaviours such as gentle acceleration and coasting to a stop. These systems use optimal control to find driving behaviour that minimises vehicle energy losses. In this paper, we introduce a methodology to account for driver preferences on acceleration, braking, following distances and cornering speed in such eco-driving optimal control problems. This consists of an optimal control model of acceleration and braking behaviour containing several physically-meaningful parameters to describe driver preferences. If used in combination with a model of fuel or energy consumption, this can provide an adjustable trade-off between satisfying those preferences and minimising energy losses. We demonstrate that the model gives comparable performance to existing car-following and cornering models when predicting drivers' speed in these situations by comparison with real-world driving data. Finally, we present an example highway braking scenario for an electric vehicle, illustrating a trade-off between satisfying driver preferences on vehicle speed and acceleration and reducing electrical energy usage by up to 43%

Incorporating Driver Preferences Into Eco-Driving Assistance Systems Using Optimal Control

Lot, Roberto
2020

Abstract

Recently there have been several proposals for `eco-driving assistance systems', designed to save fuel or electrical power by encouraging behaviours such as gentle acceleration and coasting to a stop. These systems use optimal control to find driving behaviour that minimises vehicle energy losses. In this paper, we introduce a methodology to account for driver preferences on acceleration, braking, following distances and cornering speed in such eco-driving optimal control problems. This consists of an optimal control model of acceleration and braking behaviour containing several physically-meaningful parameters to describe driver preferences. If used in combination with a model of fuel or energy consumption, this can provide an adjustable trade-off between satisfying those preferences and minimising energy losses. We demonstrate that the model gives comparable performance to existing car-following and cornering models when predicting drivers' speed in these situations by comparison with real-world driving data. Finally, we present an example highway braking scenario for an electric vehicle, illustrating a trade-off between satisfying driver preferences on vehicle speed and acceleration and reducing electrical energy usage by up to 43%
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3340132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact