The assessment of the water scarcity footprint of products emerged as an important step in supporting water management strategies. Among others, the AWARE methodology was published as a consensus-based indicator to perform such an assessment at a watershed level and monthly scale. The need to adopt such a detailed resolution, however, collides with the availability of data, so that general year and country-wide factors are commonly used. The objective of this study is to develop and verify the applicability of 26 crop-specific water scarcity characterization factors to help assess the water scarcity footprint when data and information availability is limited. To do so, a weighted average consumption approach was adopted, starting from local AWARE characterization factors and local crop-specific water consumption. The resulting factors, ranging from 0.19 m3/ton eq for "other perennial crop" in Brunei to 9997 m3/ton eq for "other annual crop" in Mauritania, illustrate the large variability of potential water scarcity impacts. Factors were applied to the water consumption of selected crops to assess their water scarcity footprint. The results of the study confirmed that the use of crop-specific factors is recommended as they are a better proxy of water scarcity in a region when compared to their national generic counterparts.

Bridging the data gap in the water scarcity footprint by using crop-specific AWARE factors

Manzardo A.
Writing – Original Draft Preparation
2019

Abstract

The assessment of the water scarcity footprint of products emerged as an important step in supporting water management strategies. Among others, the AWARE methodology was published as a consensus-based indicator to perform such an assessment at a watershed level and monthly scale. The need to adopt such a detailed resolution, however, collides with the availability of data, so that general year and country-wide factors are commonly used. The objective of this study is to develop and verify the applicability of 26 crop-specific water scarcity characterization factors to help assess the water scarcity footprint when data and information availability is limited. To do so, a weighted average consumption approach was adopted, starting from local AWARE characterization factors and local crop-specific water consumption. The resulting factors, ranging from 0.19 m3/ton eq for "other perennial crop" in Brunei to 9997 m3/ton eq for "other annual crop" in Mauritania, illustrate the large variability of potential water scarcity impacts. Factors were applied to the water consumption of selected crops to assess their water scarcity footprint. The results of the study confirmed that the use of crop-specific factors is recommended as they are a better proxy of water scarcity in a region when compared to their national generic counterparts.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3341158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact