Immersive technology is expected to become a key player in the next wave of consumer electronics with potential applications spanning a wide variety of sectors. Yet, there are a number of technological hurdles which need to be addressed. Without speed and computation capability, interactivity cannot be ensured. More than often the constrained nature of the mobile device demands is complemented by cloud ones through the use of cloud offloading techniques. With cloud offloading, battery consumption and processing performance problems are translated into sensor data selection and network latency problems. In this context, we focus our study on some functional building blocks that can be used in conjunction and deployed in a 5G virtualized architecture to alleviate bandwidth and latency requirements of immersive application scenarios. To this end, we have created an experimental scenario exploiting real data to test our combined solution based on the field of view cut and optimized transport protocols, discussing the tradeoffs that emerge.

Addressing the Bandwidth Demand of Immersive Applications Through NFV in a 5G Network

Armir Bujari;Ombretta Gaggi;Claudio E. Palazzi;Giacomo Quadrio;
2020

Abstract

Immersive technology is expected to become a key player in the next wave of consumer electronics with potential applications spanning a wide variety of sectors. Yet, there are a number of technological hurdles which need to be addressed. Without speed and computation capability, interactivity cannot be ensured. More than often the constrained nature of the mobile device demands is complemented by cloud ones through the use of cloud offloading techniques. With cloud offloading, battery consumption and processing performance problems are translated into sensor data selection and network latency problems. In this context, we focus our study on some functional building blocks that can be used in conjunction and deployed in a 5G virtualized architecture to alleviate bandwidth and latency requirements of immersive application scenarios. To this end, we have created an experimental scenario exploiting real data to test our combined solution based on the field of view cut and optimized transport protocols, discussing the tradeoffs that emerge.
File in questo prodotto:
File Dimensione Formato  
Bujari2020_Article_AddressingTheBandwidthDemandOf.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 690.43 kB
Formato Adobe PDF
690.43 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3341324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact