We consider the singular limit of a bistable reaction diffusion equation in the case when the velocity of the traveling wave solution depends on the space variable and converges to a discontinuous function. We show that the family of solutions converges to the stable equilibria off a front propagating with a discontinuous velocity. The convergence is global in time by applying the weak geometric flow uniquely defined through the theory of viscosity solutions and the level-set equation.
Singular limits of reaction diffusion equations and geometric flows with discontinuous velocity
Cecilia De Zan;Pierpaolo Soravia
2020
Abstract
We consider the singular limit of a bistable reaction diffusion equation in the case when the velocity of the traveling wave solution depends on the space variable and converges to a discontinuous function. We show that the family of solutions converges to the stable equilibria off a front propagating with a discontinuous velocity. The convergence is global in time by applying the weak geometric flow uniquely defined through the theory of viscosity solutions and the level-set equation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
FrontiRDE_revision.pdf
accesso aperto
Descrizione: file sccettato per la pubblicazione
Tipologia:
Accepted (AAM - Author's Accepted Manuscript)
Licenza:
Creative commons
Dimensione
282.58 kB
Formato
Adobe PDF
|
282.58 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0362546X20302133-main.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
905.27 kB
Formato
Adobe PDF
|
905.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.