Coastal zones have large social, economic and environmental values. They are more densely populated than the hinterland and concentrate large economic assets, critical infrastructures and human activities such as tourism, fisheries, navigation. Furthermore, coastal oceans are home to a wealth of living marine resources and very productive ecosystems. Yet, coastal zones are exposed to various natural and anthropogenic hazards. To reduce the risks associated with marine hazards, sustained coastal zone monitoring programs, forecasting and early warning systems are increasingly needed. Earth observations (EO), and in particular satellite remote sensing, provide invaluable information: satellite-borne sensors allow an effective monitoring of the quasi-global ocean, with synoptic views of large areas, good spatial and temporal resolution, and sustained time-series covering several years to decades. However, satellite observations do not always meet the precision required by users, in particular in dynamic coastal zones, characterized by shorter-scale variability. A variety of sensors are used to directly monitor the coastal zone and their observations can also be integrated into numerical models to provide a full 4D monitoring of the ocean and forecasts. Here, we review how EO, and more particularly satellite observations, can monitor coastal hazards and their drivers. These include coastal flooding, shoreline changes, maritime security, marine pollution, water quality, and marine ecology shifts on the one hand, and several physical characteristics (bathymetry, topography, vertical land motion) of coastal zones, meteorological and oceanic (metocean) variables that can act as forcing factors for coastal hazards on the other hand.

Earth Observations for Monitoring Marine Coastal Hazards and Their Drivers

Teatini P.;
2020

Abstract

Coastal zones have large social, economic and environmental values. They are more densely populated than the hinterland and concentrate large economic assets, critical infrastructures and human activities such as tourism, fisheries, navigation. Furthermore, coastal oceans are home to a wealth of living marine resources and very productive ecosystems. Yet, coastal zones are exposed to various natural and anthropogenic hazards. To reduce the risks associated with marine hazards, sustained coastal zone monitoring programs, forecasting and early warning systems are increasingly needed. Earth observations (EO), and in particular satellite remote sensing, provide invaluable information: satellite-borne sensors allow an effective monitoring of the quasi-global ocean, with synoptic views of large areas, good spatial and temporal resolution, and sustained time-series covering several years to decades. However, satellite observations do not always meet the precision required by users, in particular in dynamic coastal zones, characterized by shorter-scale variability. A variety of sensors are used to directly monitor the coastal zone and their observations can also be integrated into numerical models to provide a full 4D monitoring of the ocean and forecasts. Here, we review how EO, and more particularly satellite observations, can monitor coastal hazards and their drivers. These include coastal flooding, shoreline changes, maritime security, marine pollution, water quality, and marine ecology shifts on the one hand, and several physical characteristics (bathymetry, topography, vertical land motion) of coastal zones, meteorological and oceanic (metocean) variables that can act as forcing factors for coastal hazards on the other hand.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3343962
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 79
social impact