The purpose of this study was to develop a computer-aided detection (CAD) device based on convolutional neural networks (CNNs) to detect cardiomegaly from plain radiographs in dogs. Right lateral chest radiographs (n = 1465) were retrospectively selected from archives. The radiographs were classified as having a normal cardiac silhouette (No-vertebral heart scale [VHS]-Cardiomegaly) or an enlarged cardiac silhouette (VHS-Cardiomegaly) based on the breed-specific VHS. The database was divided into a training set (1153 images) and a test set (315 images). The diagnostic accuracy of four different CNN models in the detection of cardiomegaly was calculated using the test set. All tested models had an area under the curve >0.9, demonstrating high diagnostic accuracy. There was a statistically significant difference between Model C and the remainder models (Model A vs. Model C, P = 0.0298; Model B vs. Model C, P = 0.003; Model C vs. Model D, P = 0.0018), but there were no significant differences between other combinations of models (Model A vs. Model B, P = 0.395; Model A vs. Model D, P = 0.128; Model B vs. Model D, P = 0.373). Convolutional neural networks could therefore assist veterinarians in detecting cardiomegaly in dogs from plain radiographs.

Use of deep learning to detect cardiomegaly on thoracic radiographs in dogs.

Burti Silvia.;Longhin Osti Valentina;Zotti Alessandro;Banzato Tommaso
2020

Abstract

The purpose of this study was to develop a computer-aided detection (CAD) device based on convolutional neural networks (CNNs) to detect cardiomegaly from plain radiographs in dogs. Right lateral chest radiographs (n = 1465) were retrospectively selected from archives. The radiographs were classified as having a normal cardiac silhouette (No-vertebral heart scale [VHS]-Cardiomegaly) or an enlarged cardiac silhouette (VHS-Cardiomegaly) based on the breed-specific VHS. The database was divided into a training set (1153 images) and a test set (315 images). The diagnostic accuracy of four different CNN models in the detection of cardiomegaly was calculated using the test set. All tested models had an area under the curve >0.9, demonstrating high diagnostic accuracy. There was a statistically significant difference between Model C and the remainder models (Model A vs. Model C, P = 0.0298; Model B vs. Model C, P = 0.003; Model C vs. Model D, P = 0.0018), but there were no significant differences between other combinations of models (Model A vs. Model B, P = 0.395; Model A vs. Model D, P = 0.128; Model B vs. Model D, P = 0.373). Convolutional neural networks could therefore assist veterinarians in detecting cardiomegaly in dogs from plain radiographs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3348309
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact