Thiols are important natural molecules with diverse functions, ranging from acting as antioxidants that prevent chronic diseases to contributing aromas to foods and beverages. Biological thiols such as glutathione are of particular interest due to their functional roles, which include helping maintain cellular redox homeostasis and detoxifying reactive oxygen species. However, knowledge of thiol metabolism in plants is limited to studying known compounds, whereas other important thiol-containing metabolites could also exist. This work aimed to develop a new analytical approach for screening of thiols in plants, using four vegetal examples and beginning with HPLC-MS/MS in precursor ion scan mode, after extraction and thiol-specific derivatisation with 4,4′-dithiodipyridine (DTDP). Compound identity for prospective thiols was then proposed using HPLC with high resolution MS, and verified with authentic standards. This approach could lead to prospecting studies that identify thiols with potential roles in metabolic pathways, nutritional value of vegetables, or flavouring of foods.

A novel HPLC-MS/MS approach for the identification of biological thiols in vegetables

Millan S.;Dall'Acqua S.;Masi A.
2021

Abstract

Thiols are important natural molecules with diverse functions, ranging from acting as antioxidants that prevent chronic diseases to contributing aromas to foods and beverages. Biological thiols such as glutathione are of particular interest due to their functional roles, which include helping maintain cellular redox homeostasis and detoxifying reactive oxygen species. However, knowledge of thiol metabolism in plants is limited to studying known compounds, whereas other important thiol-containing metabolites could also exist. This work aimed to develop a new analytical approach for screening of thiols in plants, using four vegetal examples and beginning with HPLC-MS/MS in precursor ion scan mode, after extraction and thiol-specific derivatisation with 4,4′-dithiodipyridine (DTDP). Compound identity for prospective thiols was then proposed using HPLC with high resolution MS, and verified with authentic standards. This approach could lead to prospecting studies that identify thiols with potential roles in metabolic pathways, nutritional value of vegetables, or flavouring of foods.
2021
File in questo prodotto:
File Dimensione Formato  
2020 Food Chemistry - thiol identification.pdf

non disponibili

Descrizione: Thiols - Food Chemistry
Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 5.84 MB
Formato Adobe PDF
5.84 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3349765
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact