Measuring systems are becoming increasingly sophisticated in order to tackle the challenges of modern industrial problems. In particular, the Multiphase Flow Meter (MPFM) combines different sensors and data fusion techniques to estimate quantities that are difficult to be measured like the water or gas content of a multiphase flow, coming from an oil well. The evaluation of the flow composition is essential for the well productivity prediction and management, and for this reason, the quantification of the meter measurement quality is crucial. While instrument complexity is increasing, demands for confidence levels in the provided measures are becoming increasingly more common. In this work, we propose an Anomaly Detection approach, based on unsupervised Machine Learning algorithms, that enables the metrology system to detect outliers and to provide a statistical level of confidence in the measures. The proposed approach, called AD4MPFM (Anomaly Detection for Multiphase Flow Meters), is designed for embedded implementation and for multivariate time-series data streams. The approach is validated both on real and synthetic data.

Self-Diagnosis of Multiphase Flow Meters through Machine Learning-Based Anomaly Detection

Tommaso Barbariol;Enrico Feltresi;Gian Antonio Susto
2020

Abstract

Measuring systems are becoming increasingly sophisticated in order to tackle the challenges of modern industrial problems. In particular, the Multiphase Flow Meter (MPFM) combines different sensors and data fusion techniques to estimate quantities that are difficult to be measured like the water or gas content of a multiphase flow, coming from an oil well. The evaluation of the flow composition is essential for the well productivity prediction and management, and for this reason, the quantification of the meter measurement quality is crucial. While instrument complexity is increasing, demands for confidence levels in the provided measures are becoming increasingly more common. In this work, we propose an Anomaly Detection approach, based on unsupervised Machine Learning algorithms, that enables the metrology system to detect outliers and to provide a statistical level of confidence in the measures. The proposed approach, called AD4MPFM (Anomaly Detection for Multiphase Flow Meters), is designed for embedded implementation and for multivariate time-series data streams. The approach is validated both on real and synthetic data.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3350594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact