A thorough characterization of the early time sub-100 fs relaxation dynamics of biologically relevant chromophores is of crucial importance for a complete understanding of the mechanisms regulating the ultrafast dynamics of the relaxation processes in more complex multichromophoric light-harvesting systems. While chlorophyll a has already been the object of several investigations, little has been reported on chlorophyll b, despite its pivotal role in many functionalities of photosynthetic proteins. Here the relaxation dynamics of chlorophyll b in the ultrafast regime have been characterized using 2D electronic spectroscopy. The comparison of experimental measurements performed at room temperature and 77 K allows the mechanisms and the dynamics of the sub-100 fs relaxation dynamics to be characterized, including spectral diffusion and fast internal conversion assisted by a specific set of vibrational modes.

Relaxation dynamics of chlorophyll b in the sub-ps ultrafast timescale measured by 2d electronic spectroscopy

Fresch E.;Collini E.
2020

Abstract

A thorough characterization of the early time sub-100 fs relaxation dynamics of biologically relevant chromophores is of crucial importance for a complete understanding of the mechanisms regulating the ultrafast dynamics of the relaxation processes in more complex multichromophoric light-harvesting systems. While chlorophyll a has already been the object of several investigations, little has been reported on chlorophyll b, despite its pivotal role in many functionalities of photosynthetic proteins. Here the relaxation dynamics of chlorophyll b in the ultrafast regime have been characterized using 2D electronic spectroscopy. The comparison of experimental measurements performed at room temperature and 77 K allows the mechanisms and the dynamics of the sub-100 fs relaxation dynamics to be characterized, including spectral diffusion and fast internal conversion assisted by a specific set of vibrational modes.
File in questo prodotto:
File Dimensione Formato  
IntJMolSci21(2020)02836.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3351170
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact