Electron spin echo (ESE) decays are highly sensitive to stochastic librations which are a general property of molecular solids of various origins. Adsorption of spin-labeled molecules on a solid inorganic surface under diluted conditions allows studying the motion devoid of the effects of cooperativity. Here, the temperature dependence of the motion-induced spin relaxation was studied for different types of spin-labeled molecules adsorbed on a SiO2 surface. The spin relaxation rate for all the systems was found to attain well-defined maxima, which is in agreement with the model of uniaxial molecular librations. For spin-labeled stearic acid, the enhanced maximal relaxation rate was found which was interpreted as manifestation of two-axial (or planar) motion that is naturally expected for long flexible molecules. The data obtained suggest that the onset of the motions observed at two different temperatures, 100 K and 130 K, may be attributed to torsional and bending types of the motion, respectively. The models of non-cooperative motion developed for adsorbed molecules may become useful for analyzing motions in complex biological media, frozen ionic liquids, polymers, etc.

ESE-Detected Molecular Motions of Spin-Labeled Molecules on a Solid Inorganic Surface: Motional Models and Onset Temperatures

De Zotti M.;Formaggio F.;Gobbo M.;
2020

Abstract

Electron spin echo (ESE) decays are highly sensitive to stochastic librations which are a general property of molecular solids of various origins. Adsorption of spin-labeled molecules on a solid inorganic surface under diluted conditions allows studying the motion devoid of the effects of cooperativity. Here, the temperature dependence of the motion-induced spin relaxation was studied for different types of spin-labeled molecules adsorbed on a SiO2 surface. The spin relaxation rate for all the systems was found to attain well-defined maxima, which is in agreement with the model of uniaxial molecular librations. For spin-labeled stearic acid, the enhanced maximal relaxation rate was found which was interpreted as manifestation of two-axial (or planar) motion that is naturally expected for long flexible molecules. The data obtained suggest that the onset of the motions observed at two different temperatures, 100 K and 130 K, may be attributed to torsional and bending types of the motion, respectively. The models of non-cooperative motion developed for adsorbed molecules may become useful for analyzing motions in complex biological media, frozen ionic liquids, polymers, etc.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3352365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact