The aggregation of α-synuclein is a critical event in the pathogenesis of neurological diseases, such as Parkinson or Alzheimer. Here, we present a label-free sensor based on an Electrolyte-Gated Organic Field-Effect Transistor (EGOFET) integrated with microfluidics that allows for the detection of amounts of α-synuclein in the range from 0.25 pM to 25 nM. The lower limit of detection (LOD) measures the potential of our integrated device as a tool for prognostics and diagnostics. In our device, the gate electrode is the effective sensing element as it is functionalised with anti-(α-synuclein) antibodies using a dual strategy: i) an amino-terminated self-assembled monolayer activated by glutaraldehyde, and ii) the His-tagged recombinant protein G. In both approaches, comparable sensitivity values were achieved, featuring very low LOD values at the sub-pM level. The microfluidics engineering is central to achieve a controlled functionalisation of the gate electrode and avoid contamination or physisorption on the organic semiconductor. The demonstrated sensing architecture, being a disposable stand-alone chip, can be operated as a point-of-care test, but also it might represent a promising label-free tool to explore in-vitro protein aggregation that takes place during the progression of neurodegenerative illnesses.

Label-free immunodetection of α-synuclein by using a microfluidics coplanar electrolyte-gated organic field-effect transistor

Casalini S.
;
Greco P.;
2020

Abstract

The aggregation of α-synuclein is a critical event in the pathogenesis of neurological diseases, such as Parkinson or Alzheimer. Here, we present a label-free sensor based on an Electrolyte-Gated Organic Field-Effect Transistor (EGOFET) integrated with microfluidics that allows for the detection of amounts of α-synuclein in the range from 0.25 pM to 25 nM. The lower limit of detection (LOD) measures the potential of our integrated device as a tool for prognostics and diagnostics. In our device, the gate electrode is the effective sensing element as it is functionalised with anti-(α-synuclein) antibodies using a dual strategy: i) an amino-terminated self-assembled monolayer activated by glutaraldehyde, and ii) the His-tagged recombinant protein G. In both approaches, comparable sensitivity values were achieved, featuring very low LOD values at the sub-pM level. The microfluidics engineering is central to achieve a controlled functionalisation of the gate electrode and avoid contamination or physisorption on the organic semiconductor. The demonstrated sensing architecture, being a disposable stand-alone chip, can be operated as a point-of-care test, but also it might represent a promising label-free tool to explore in-vitro protein aggregation that takes place during the progression of neurodegenerative illnesses.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3352435
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 39
social impact