Background: Precision medicine is a medical approach that takes into account individual genetic variability and often requires Next Generation Sequencing data in order to predict new treatments. Here we present GMIEC, Genomic Modules Identification et Characterization for genomics medicine, an application that is able to identify specific drugs at the level of single patient integrating multi-omics data such as RNA-sequencing, copy-number variation, methylation, Chromatin Immuno-Precipitation and Exome/Whole Genome sequencing. It is also possible to include clinical data related to each patient. GMIEC has been developed as a web-based R-Shiny platform and gives as output a table easy to use and explore. Results: We present GMIEC, a Shiny application for genomics medicine. The tool allows the users the integration of two or more multiple omics datasets (e.g. gene-expression, copy-number), at sample level, to identify groups of genes that share common genomic and corresponding drugs. We demonstrate the characteristics of our application by using it to analyze a prostate cancer data set. Conclusions: GMIEC provides a simple interface for genomics medicine. GMIEC was develop with Shiny to provide an application that does not require advanced programming skills. GMIEC consists of three sub-application for the analysis (GMIEC-AN), the visualization (GMIEC-VIS) and the exploration of results (GMIEC-RES). GMIEC is an open source software and is available at https://github.com/guidmt/GMIEC-shiny

GMIEC: A shiny application for the identification of gene-targeted drugs for precision medicine

Malagoli Tagliazucchi G.;Taccioli C.
2020

Abstract

Background: Precision medicine is a medical approach that takes into account individual genetic variability and often requires Next Generation Sequencing data in order to predict new treatments. Here we present GMIEC, Genomic Modules Identification et Characterization for genomics medicine, an application that is able to identify specific drugs at the level of single patient integrating multi-omics data such as RNA-sequencing, copy-number variation, methylation, Chromatin Immuno-Precipitation and Exome/Whole Genome sequencing. It is also possible to include clinical data related to each patient. GMIEC has been developed as a web-based R-Shiny platform and gives as output a table easy to use and explore. Results: We present GMIEC, a Shiny application for genomics medicine. The tool allows the users the integration of two or more multiple omics datasets (e.g. gene-expression, copy-number), at sample level, to identify groups of genes that share common genomic and corresponding drugs. We demonstrate the characteristics of our application by using it to analyze a prostate cancer data set. Conclusions: GMIEC provides a simple interface for genomics medicine. GMIEC was develop with Shiny to provide an application that does not require advanced programming skills. GMIEC consists of three sub-application for the analysis (GMIEC-AN), the visualization (GMIEC-VIS) and the exploration of results (GMIEC-RES). GMIEC is an open source software and is available at https://github.com/guidmt/GMIEC-shiny
2020
File in questo prodotto:
File Dimensione Formato  
s12864-020-06996-y.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3354055
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact