Nanostructured α-Mn3O4 (haussmannite) thin films consisting of evenly interconnected nanoaggregates were prepared on Si(100) substrates by chemical vapor deposition from a Mn(II) diketonate-diamine precursor under different reaction atmospheres (dry vs wet O2) and total operating pressures. The combination of chemico-physical results obtained by the joint use of complementary techniques enabled us to demonstrate the obtainment of high-purity Mn3O4 materials free from other manganese oxide phases, characterized by controllable structural and morphological characteristics as a function of the adopted processing conditions. Magnetic properties were investigated by analyzing temperature dependence (i.e., field-cooled and zero-field-cooled measurements) and field-dependence of the magnetization behavior. The obtained films show bulk-like magnetic properties, together with extraordinarily high low-temperature in-plane coercivities (up to ∼1 T). The possibility to tailor these values by varying the content of microstructural defects may foster the implementation of the obtained films in eventual technological applications. ©

High Magnetic Coercivity in Nanostructured Mn3O4 Thin Films Obtained by Chemical Vapor Deposition

Bigiani L.;Maccato C.;Sada C.;Barreca D.
2019

Abstract

Nanostructured α-Mn3O4 (haussmannite) thin films consisting of evenly interconnected nanoaggregates were prepared on Si(100) substrates by chemical vapor deposition from a Mn(II) diketonate-diamine precursor under different reaction atmospheres (dry vs wet O2) and total operating pressures. The combination of chemico-physical results obtained by the joint use of complementary techniques enabled us to demonstrate the obtainment of high-purity Mn3O4 materials free from other manganese oxide phases, characterized by controllable structural and morphological characteristics as a function of the adopted processing conditions. Magnetic properties were investigated by analyzing temperature dependence (i.e., field-cooled and zero-field-cooled measurements) and field-dependence of the magnetization behavior. The obtained films show bulk-like magnetic properties, together with extraordinarily high low-temperature in-plane coercivities (up to ∼1 T). The possibility to tailor these values by varying the content of microstructural defects may foster the implementation of the obtained films in eventual technological applications. ©
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3358937
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact