Abstract: In the context of the AdS3/CFT2 correspondence, we investigate the Higgs branch CFT2. Witten showed that states localised near the small instanton singularity can be described in terms of vector multiplet variables. This theory has a planar, weak-coupling limit, in which anomalous dimensions of single-trace composite operators can be calculated. At one loop, the calculation reduces to finding the spectrum of a spin-chain with nearest-neighbour interactions. This CFT2 spin-chain matches precisely the one that was previously found as the weak-coupling limit of the integrable system describing the AdS3 side of the duality. We compute the one-loop dilatation operator in a non-trivial compact subsector and show that it corresponds to an integrable spin-chain Hamiltonian. This provides the first direct evidence of integrability on the CFT2 side of the correspondence.

Integrability and the conformal field theory of the Higgs branch

Sfondrini A.;
2015

Abstract

Abstract: In the context of the AdS3/CFT2 correspondence, we investigate the Higgs branch CFT2. Witten showed that states localised near the small instanton singularity can be described in terms of vector multiplet variables. This theory has a planar, weak-coupling limit, in which anomalous dimensions of single-trace composite operators can be calculated. At one loop, the calculation reduces to finding the spectrum of a spin-chain with nearest-neighbour interactions. This CFT2 spin-chain matches precisely the one that was previously found as the weak-coupling limit of the integrable system describing the AdS3 side of the duality. We compute the one-loop dilatation operator in a non-trivial compact subsector and show that it corresponds to an integrable spin-chain Hamiltonian. This provides the first direct evidence of integrability on the CFT2 side of the correspondence.
File in questo prodotto:
File Dimensione Formato  
scoap3-fulltext(1).pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 696.98 kB
Formato Adobe PDF
696.98 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3360588
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 41
  • OpenAlex ND
social impact