Liquid exfoliation of three-dimensional bulk solids with an inherent layered structure is an effective and scalable method to produce stable re-aggregation colloidal inks of 2D materials that are suitable for solution processing. Shear mixing is a relatively gentle technique that allows exfoliation while preserving the native lateral size of the 3D precursors, while tip sonication often leads to extensive structural damage, producing 2D sheets where many edge defects are introduced. We present a mixed approach to obtain liquid dispersions of few-layer graphene flakes, wherein the average lateral size of the colloids can be tuned in a controlled way. This strategy relies on the application of defined tip sonication steps on graphene inks previously prepared through the use of a shear mixer, thus starting with already-exfoliated micro-sheets with a limited amount of edge defects. Our approach could represent a valuable method to prepare 2D material inks with variable size distributions, as differences in this parameter could have a significant impact on the electronic behavior of the final material and thus on its field of application.

Controlled Size Reduction of Liquid Exfoliated Graphene Micro-Sheets via Tip Sonication

Di Berardino, C;Lamberti, F;Menna, E;
2020

Abstract

Liquid exfoliation of three-dimensional bulk solids with an inherent layered structure is an effective and scalable method to produce stable re-aggregation colloidal inks of 2D materials that are suitable for solution processing. Shear mixing is a relatively gentle technique that allows exfoliation while preserving the native lateral size of the 3D precursors, while tip sonication often leads to extensive structural damage, producing 2D sheets where many edge defects are introduced. We present a mixed approach to obtain liquid dispersions of few-layer graphene flakes, wherein the average lateral size of the colloids can be tuned in a controlled way. This strategy relies on the application of defined tip sonication steps on graphene inks previously prepared through the use of a shear mixer, thus starting with already-exfoliated micro-sheets with a limited amount of edge defects. Our approach could represent a valuable method to prepare 2D material inks with variable size distributions, as differences in this parameter could have a significant impact on the electronic behavior of the final material and thus on its field of application.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3361667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact