Abstract: We classify weak-scale extensions of the Standard Model which automatically preserve its accidental and approximate symmetry structure at the renormalizable level and which are hence invisible to low-energy indirect probes. By requiring the consistency of the effective field theory up to scales of Λeff ≈ 1015 GeV and after applying cosmological constraints, we arrive at a finite set of possibilities that we analyze in detail. One of the most striking signatures of this framework is the presence of new charged and/or colored states which can be efficiently produced in high-energy particle colliders and which are stable on the scale of detectors.

Accidental matter at the LHC

Di Luzio L.;Groeber R.;
2015

Abstract

Abstract: We classify weak-scale extensions of the Standard Model which automatically preserve its accidental and approximate symmetry structure at the renormalizable level and which are hence invisible to low-energy indirect probes. By requiring the consistency of the effective field theory up to scales of Λeff ≈ 1015 GeV and after applying cosmological constraints, we arrive at a finite set of possibilities that we analyze in detail. One of the most striking signatures of this framework is the presence of new charged and/or colored states which can be efficiently produced in high-energy particle colliders and which are stable on the scale of detectors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3361735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 48
social impact