In the next decade, new astrophysical instruments will deliver the first large-scale maps of gravitational waves (GWs) and radio sources. Therefore, it is timely to investigate the possibility to combine them to provide new and complementary ways to study the Universe. Using simulated catalogues appropriate to the planned surveys, it is possible to predict measurements of the cross-correlation between radio sources and GW maps and the effects of a stochastic GW background on galaxy maps. Effects of GWs on the large-scale structure (LSS) of the Universe can be used to investigate the nature of the progenitors of merging black holes, the validity of Einstein's general relativity, models for dark energy and detect a stochastic background of GW. The results obtained show that the galaxy-GW cross-correlation can provide useful information in the near future, while the detection of tensor perturbation effects on the LSS will require instruments with capabilities beyond the currently planned next generation of radio arrays. Nevertheless, any information from the combination of galaxy surveys with the GW maps will help provide additional information for the newly born GW astronomy.

Gravitational wave astronomy with radio galaxy surveys

Raccanelli A.
2017

Abstract

In the next decade, new astrophysical instruments will deliver the first large-scale maps of gravitational waves (GWs) and radio sources. Therefore, it is timely to investigate the possibility to combine them to provide new and complementary ways to study the Universe. Using simulated catalogues appropriate to the planned surveys, it is possible to predict measurements of the cross-correlation between radio sources and GW maps and the effects of a stochastic GW background on galaxy maps. Effects of GWs on the large-scale structure (LSS) of the Universe can be used to investigate the nature of the progenitors of merging black holes, the validity of Einstein's general relativity, models for dark energy and detect a stochastic background of GW. The results obtained show that the galaxy-GW cross-correlation can provide useful information in the near future, while the detection of tensor perturbation effects on the LSS will require instruments with capabilities beyond the currently planned next generation of radio arrays. Nevertheless, any information from the combination of galaxy surveys with the GW maps will help provide additional information for the newly born GW astronomy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3363767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact