An increase in water use in urban areas is forcing scientists and policy makers to find alternative solutions for freshwater management, aimed at attaining integrated water resources management. Here, we tested in a 2-year experiment (June 2017–April 2019) the treatment performance of an innovative wall cascade constructed wetland (WCCW) system. The aim was to combine the multifunctional benefits of green walls (e.g. aesthetic, surface area requirements) with those of constructed wetland systems (e.g. high pollutants removal efficiencies, water recycling) to treat kitchen greywaters. The WCCW was a terraced system of six phytoremediation lines, each of which was composed of three plastic tanks (3 × 0.04 m3), filled with lightweight porous media, and vegetated with different ornamental species, namely Mentha aquatica L., Oenanthe javanica (Blume) DC., and Lysimachia nummularia L. Physicochemical (temperature, pH, electrical conductivity, dissolved oxygen, turbidity) and chemical parameters (chemical oxygen demand, biochemical oxygen demand, anionic surfactants, Kjeldahl, ammonium and nitric nitrogen, total orthophosphate) were monitored at a frequency of at least 15 days, depending on the season and WCCW management. Results showed that the WCCW significantly reduced the main water pollutants (e.g. organic compounds, nutrients), suggesting its potential application in urban environments for water recycling in the context of green infrastructures and ecological sanitation. A culture-independent taxonomic assessment of suspended bacterial communities before and after the treatment showed clear treatment-related shifts, being the functional ecology attributes changed according to changes in greywater chemical parameters. Future research should attempt to optimize the WCCW system management by regulating the nutrients balance to avoid macronutrients deficiency, and setting the most suitable water flow dynamics (hydraulic retention time, saturation-desaturation cycles) to improve the greywater treatment.

Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experiment

Dal Ferro N.;De Mattia C.;Gandini M. A.;Maucieri C.;Stevanato P.;Squartini A.;Borin M.
2021

Abstract

An increase in water use in urban areas is forcing scientists and policy makers to find alternative solutions for freshwater management, aimed at attaining integrated water resources management. Here, we tested in a 2-year experiment (June 2017–April 2019) the treatment performance of an innovative wall cascade constructed wetland (WCCW) system. The aim was to combine the multifunctional benefits of green walls (e.g. aesthetic, surface area requirements) with those of constructed wetland systems (e.g. high pollutants removal efficiencies, water recycling) to treat kitchen greywaters. The WCCW was a terraced system of six phytoremediation lines, each of which was composed of three plastic tanks (3 × 0.04 m3), filled with lightweight porous media, and vegetated with different ornamental species, namely Mentha aquatica L., Oenanthe javanica (Blume) DC., and Lysimachia nummularia L. Physicochemical (temperature, pH, electrical conductivity, dissolved oxygen, turbidity) and chemical parameters (chemical oxygen demand, biochemical oxygen demand, anionic surfactants, Kjeldahl, ammonium and nitric nitrogen, total orthophosphate) were monitored at a frequency of at least 15 days, depending on the season and WCCW management. Results showed that the WCCW significantly reduced the main water pollutants (e.g. organic compounds, nutrients), suggesting its potential application in urban environments for water recycling in the context of green infrastructures and ecological sanitation. A culture-independent taxonomic assessment of suspended bacterial communities before and after the treatment showed clear treatment-related shifts, being the functional ecology attributes changed according to changes in greywater chemical parameters. Future research should attempt to optimize the WCCW system management by regulating the nutrients balance to avoid macronutrients deficiency, and setting the most suitable water flow dynamics (hydraulic retention time, saturation-desaturation cycles) to improve the greywater treatment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3365190
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact